摘要
针对老年用户使用多个健康监测设备过程中每次都要手动连接智能手机的痛点,提出了通过决策树ID3算法训练用户行为模型,预测用户行为,自动连接用户将要使用的设备,还针对用户可能变化的行为习惯提出了改进决策树算法的策略。试验表明,决策树算法构建的用户行为模型,对用户的行为预测准确率较高。将决策树算法应用于预测用户将要连接的健康监测设备,并自动连接设备,提升了用户体验,降低了用户的健康监测设备使用成本。
In view of the pain point that the elderly users need to connect to the smart phone manually every time when they use multiple health monitoring devices,this paper proposes a method to train the user behavior model through the decision tree ID3 algorithm,predict the user’s behavior,and automatically connect to the devices that the user will use,and proposes a strategy to improve the decision tree algorithm for the possible change of the user’s behavior habits.Experiments show that the user behavior model constructed by the decision tree algorithm has higher accuracy in predicting user behavior.The decision tree algorithm is applied to predict the health monitoring equipment that the user will connect to,and automatically connect the equipment,which improves the user experience and reduces the cost of using the health monitoring equipment.
作者
高雄
葛艳红
GAO Xiong;GE Yan-hong(School of Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China)
出处
《自动化与仪表》
2020年第6期74-79,共6页
Automation & Instrumentation
基金
中国残联研究课题残疾人辅助器具专项项目(CJFJRRB01-2019)。
关键词
设备自动连接
决策树
人体健康监测
行为预测
automatic connection of equipment
decision tree
human health monitoring
behavior prediction