摘要
近邻传播聚类(Affinity Propagation,AP)算法具有良好的聚类性能,但是在聚类过程中单个聚类器的聚类性能不佳,存在聚类准确率较低的现象,如果将多个近邻传播聚类器集成起来则能够克服聚类的随机性和单个聚类器聚类准确率不高的问题。笔者利用装袋法将半监督AP算法进行集成,在标准数据集上进行测试,获得了更优的聚类精度。
The affinity propagation algorithm has good clustering performance,but during the clustering process,the clustering performance of a single clusterer is not good,and the accuracy is low.If multiple affinity propagation clusterers are integrated,it can be overcome that the randomness of clustering and the low accuracy of single clusterer.In this paper,the bagging method is used to integrate the semi-supervised AP algorithm,and the test is performed on a standard dataset to obtain better clustering accuracy.
作者
李林阳
李高明
李笑
Li Linyang;Li Gaoming;Li Xiao(Basic Department,Engineering University of PAP,Xi'an Shaanxi 710086,China)
出处
《信息与电脑》
2020年第9期49-51,共3页
Information & Computer
关键词
近邻传播聚类算法
装袋法
聚类集成
neighborhood propagation clustering algorithm
bagging method
clustering integration