期刊文献+

基于中、高层特征融合的高分辨率遥感图像场景分类 被引量:2

Scene Classification of High Resolution Remote Sensing Images Based on Middle and High Level Feature Fusion
下载PDF
导出
摘要 针对传统场景分类算法中,利用低、中层特征不能够很好表达高分辨率遥感图像的场景语义,分类精度较低的缺点,提出了一种视觉词袋法(bag-of-visual words,BOVW)结合卷积神经网络(CNN)的高分辨率遥感图像场景分类方法.首先利用视觉词袋模型对遥感影像提取的局部手工特征进行编码得到中层特征,然后利用卷积神经网络来提取图像的高层特征,将提取到的中、高层特征进行融合,再将融合特征输入到不同核函数的支持向量机(SVM)中进行分类.实验结果表明,融合特征比单一特征更能对遥感影像有效表达.与现有遥感图像场景分类方法相比,本方法能够提高场景分类精度,验证了该方法的有效性. In order to overcome the shortcomings of traditional scene classification algorithm that the low-level and middle-level features cannot well express the scene semantics of high-resolution remote sensing images and the classification accuracy is low,a high-resolution remote sensing image scene classification method is proposed based on bag-of-visual words in combination with convolution neural network.Firstly,the middle-level features of remote sensing image are extracted by using visual word package model,then the high-level features of image are extracted by using different convolution neural network,and the extracted middle and high-level features are fused,and then the fused features are input into support vector machine with different kernel functions for classification.According to the experimental results,fusion feature can express remote sensing image more effectively than single feature.The proposed method can effectively improve classification accuracy and verify the effectiveness in comparison with the existing remote sensing image scene classification methods.
作者 赵春晖 马博博 ZHAO Chunhui;MA Bobo(College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China)
出处 《沈阳大学学报(自然科学版)》 CAS 2020年第3期224-232,共9页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(61971153,61571145) 黑龙江省自然科学基金重点项目(ZD201216).
关键词 高分辨率遥感图像 场景分类 BOVW算法 CNN 特征融合 high resolution remote sensing images scene classification BOVW algorithm CNN feature fusion
  • 相关文献

参考文献5

二级参考文献94

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献540

同被引文献3

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部