期刊文献+

玻璃缺陷在线检测系统常见问题的解决方法 被引量:1

The Solution to Usual Problems for on Line Inspection System of Glass Defects
下载PDF
导出
摘要 玻璃缺陷在线检测系统在玻璃生产行业获得广泛应用,通过智能相机,其能够不间断地对玻璃带进行检测。系统检测出来的缺陷类型、尺寸大小及缺陷位置等重要数据发送到线控,再由线控进行优化切割,可以在很大程度上提高生产效率。在生产过程中有时会有缺陷漏检、核心尺寸不稳定等情况出现。根据在调试过程中遇到的一些问题,提出了如何能够快速找到问题产生原因和解决问题的方法。 Glass defect online detection system has been widely used in the glass production industry.Through intelligent camera,it can continuously detect the glass belt.Important data such as defect type,size and defect location detected by the system are sent to the wire control,and then the wire control is used to optimize the cutting,which can greatly improve the production efficiency.In the process of production,sometimes there will be defects missed,the core size is not stable and so on.According to some problems encountered in the process of debugging,how to quickly identify the cause of the problem and how to solve it is proposed.
作者 郝星斗 HAO Xingdou(ISRA VISION(SHANGHAI)CO,LTD,Shanghai 201901,China)
出处 《玻璃》 2020年第6期39-43,共5页 Glass
关键词 玻璃缺陷在线检测设备 玻璃缺陷 智能相机 Glass defects online detection equipment glass defects smart cameras
  • 相关文献

参考文献2

二级参考文献8

  • 1E.N. Malamas, E.G.M Petrakis, M. Zervakis, L. Petit, J.D. Legat. A survey on industrial vision systems, application and tools[J]. Image and Vision Computing, 2003, Vol. 21, pp. 171-188.
  • 2B.G. Batchelor and E F. Whelan. Intelligent Vision Systems for Industry[M], 1997, Springer-Verlag, London.
  • 3R.Brow!ng. Recent Advances in Automated Patterned Wafer Inspection[J].Proc. of SPIE, 1989, Vol. 1087, pp.440 445.
  • 4Chang-Hwan Oh, Hyonam Joo and Keun-Ho Rew. Detecting Low-Contrast Defect Regions on Glasses Using Highly Robust Model-Fitting Estimator[J]. International Conference on Control, Automation and Systems, 2007, pp. 2138-2141.
  • 5K.H. Rew, T.H. Nam, H. Joo, and K.W. KO. Enhancement of Illumination Irregularity for the 2D Blot Detection under Low Contrast[J]. Journal of the Korean Society for Precision Engineering, Vol. 24, 2007, No. pp. 29- 35.
  • 6J.Y. Lee, and S.I. Yoo. Automatic Detection of Region- Mura Defect in TFT-LCD[J]. IEICE TRANS. INF. & SYST, 2004, Vol. E87-D, No. 10, pp. 2371-2378.
  • 7Jie Zhao, Xu Zhao and Yuneai Liu. A Method for Detection and Classification of Glass Defects in Low Resolution Images[J]. Sixth International Conference on Image and Graphics, 2011, pp.642-647.
  • 8Makoto Shimizu, Akira Ishii and Toshio Nishimura. Detection of Foreign Material Included in LCD Panels[J]. IEEE conference, 2000, pp.836-841.

共引文献19

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部