摘要
城市地下综合管廊管线主要包含燃气管道、电力电缆和给排水管道,与人们的生产生活息息相关。然而管线所处的环境恶劣,不可避免会出现各种故障,于是文章对其故障诊断进行研究。首先分析数据的收集和监测,然后使用BP神经网络算法进行计算,得到管线发生故障的原因和位置。通过仿真实验得知,系统能够准确对管线进行故障诊断,从而能够提高管线的安全运行。
Urban underground comprehensive pipe gallery pipeline mainly include gas pipelines,power cables and water supply and drainage pipes,which are closely related to people's production and life.However,the environ⁃ment in which the pipeline is located is harsh,and various failures will inevitably occur.Therefore,the paper stud⁃ies its fault diagnosis.First analyze the data collection and monitoring,and then use the BP neural network algo⁃rithm to perform calculations to obtain the cause and location of the pipeline failure.It is learned through simula⁃tion experiments that the system can accurately diagnose pipeline faults,thereby improving the safe operation of pipelines.
作者
杨远
王尉军
苟华新
盛兴隆
YANG Yuan;WANG Wei-jun;GOU Hua-xin;SHENG Xing-long(Guiyang Power Supply Bureau,Guizhou Power Grid Co.,Ltd.,Guiyang Guizhou 550001,China)
出处
《粘接》
CAS
2020年第6期184-188,共5页
Adhesion
关键词
管廊管线
数据采集
故障诊断
pipe gallery pipeline
data acquisition
fault diagnosis