期刊文献+

无人机侦察图像运动模糊复原方法研究

Research on Motion Blur Restoration Method of UAV Reconnaissance Image
下载PDF
导出
摘要 无人机具有体积小、使用方便以及战场生存能力较强等优点,在军事领域中应用越来越广泛;无人机进行情报侦察时,成像设备与拍摄物之间存在相对运动,使得拍摄到的图像出现模糊,严重影响后期的情报处理,因此如何提高模糊图片的质量成为无人机情报处理中的重要课题;介绍了在无人机侦察这一背景下图像运动模糊的降质机理及成像特点,对运动模糊复原领域中图像非盲复原与盲复原两类方法进行研究,从算法原理和实际应用两方面对每种算法的优缺点进行了总结;最后对无人机侦察图像运动模糊复原算法的发展趋势做出展望,实时性、适用性与智能性将成为算法的主流发展方向。 Unmanned aerial vehicle(UAV)has many advantages,such as small size,easy to use and strong battlefield survivability.It has been widely used in military field.When UAV reconnaissance,there is relative motion between the imaging equipment and the object,which makes the image blurred and seriously affects the later information processing.Therefore,how to improve the quality of the blurred image has become an important issue in UAV intelligence processing.This paper introduces the degradation mechanism and imaging characteristics of image motion blur under the background of UAV reconnaissance,studies two kinds of methods of image non-blind restoration and blind restoration in the field of motion blur restoration,and summarizes the advantages and disadvantages of each algorithm from two aspects of algorithm principle and practical application.Finally,the development trend of motion blur restoration algorithm for UAV reconnaissance image is prospected.Real-time,applicability and intelligence will become the mainstream development direction of the algorithm.
作者 武永恒 张小孟 李小民 李文广 李炭 Wu Yongheng;Zhang Xiaomeng;Li Xiaomin;Li Wenguang;Li Tan(College of Electrical and Electronic Engineering,Shijiazhuang Railway University,Shijiazhuang 050043,China;Department of Unmanned Aerial Vehicle Engineering,Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003,China)
出处 《计算机测量与控制》 2020年第6期113-118,124,共7页 Computer Measurement &Control
基金 2019年石家庄铁道大学校级研究生创新资助项目(YC2019064)。
关键词 无人机 相对运动 情报处理 运动模糊复原 侦察图像 unmanned aerial vehicle(UAV) relative motion information processing motion blur restoration reconnaissance images
  • 相关文献

参考文献4

二级参考文献17

  • 1谢文科,姜宗福.气动光学畸变波前的本征正交分解和低阶近似[J].中国激光,2007,34(4):491-495. 被引量:8
  • 2Blomgren Peter,IEEE Trans Image Processing,1998年,7卷,3期,304页
  • 3Chan T F,IEEE Trans Image Processing,1998年,7卷,3期,370页
  • 4You Y,IEEE Trans Image Processing,1996年,5卷,4期,416页
  • 5Zhou Y T,IEEE Trans ASSP,1988年,36卷,7期,1141页
  • 6Jumper E J, Fitzgerald E J. Recent advances in aero-op- tics [ J ]. Progress in Aerospace Science, 2001, 37- 299 - 399.
  • 7Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering[ J]. IEEE Trans Signal Processing, 1998,46 ( 2 ) : 375 - 390.
  • 8Ong C A, Chambers J A. An enhanced NAS-RIF algo- rithm for blind image deconvolution [ J ]. IEEE Trans Im- age Processing, 1999,8 (7) :988 - 992.
  • 9王卫江,沈庭芝.改进的基于支持域估计和噪声去除的NAS-RIF算法[J].仪器仪表学报,2009,30(6):222-226.
  • 10Rafael C G, Richard E W. Digital image processing[ M ]. Prentice Hall ,2007.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部