期刊文献+

人工智能在计算机兵棋推演领域的应用 被引量:4

Study on Application of Artificial Intelligence in Computer Wargame
下载PDF
导出
摘要 智能化博弈对抗的理念和技术可以应用于兵棋推演。基于计算机兵棋的特点、人工智能发展现状和核心技术,探讨将深度学习应用到兵棋推演的方法、途径和问题,分析人工智能在计算机兵棋推演中的应用现状和未来发展。 The concept and technology of intelligent game antagonism can be applied to the simulation of wargame.Based on the characteristics of computer game,the development status and core technology of artificial intelligence,this paper discusses the methods,approaches and problems of applying deep learning to the game simulation,and analyzes the application status and future development of artificial intelligence in the game simulation.
作者 戴勇 黄杏花 DAI Yong;HUANG Xinghua(Nanjing Institute of simulation technology,Jiangsu 210016,China;Nanjing Zhongxing Software Co.,Ltd,Jiangsu 210012,China)
出处 《集成电路应用》 2020年第5期67-69,共3页 Application of IC
基金 江苏省科技企业技术创新课题项目。
关键词 计算机工程 兵棋推演 人工智能 深度学习 computer engineering wargame artificial intelligence deep learning
  • 相关文献

参考文献8

二级参考文献150

  • 1叶雄兵,江敬灼,朱松岩.联合作战对抗推演系统建设研究[J].军事运筹与系统工程,2008,22(3):3-7. 被引量:9
  • 2杨南征.虚拟演兵[M].北京:解放军出版社,2007:446-448.
  • 3刘源.兵棋与兵棋推演[M].北京:国防大学出版社,2013.
  • 4MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-levelcontrol through deep reinforcement learning [J]. Nature, 2015,518(7540): 529 – 533.
  • 5SILVER D, HUANG A, MADDISON C, et al. Mastering the gameof Go with deep neural networks and tree search [J]. Nature, 2016,529(7587): 484 – 489.
  • 6AREL I. Deep reinforcement learning as foundation for artificialgeneral intelligence [M] //Theoretical Foundations of Artificial GeneralIntelligence. Amsterdam: Atlantis Press, 2012: 89 – 102.
  • 7TEAAURO G. TD-Gammon, a self-teaching backgammon program,achieves master-level play [J]. Neural Computation, 1994,6(2): 215 – 219.
  • 8SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction[M]. Cambridge MA: MIT Press, 1998.
  • 9KEARNS M, SINGH S. Near-optimal reinforcement learning inpolynomial time [J]. Machine Learning, 2002, 49(2/3): 209 – 232.
  • 10KOCSIS L, SZEPESVARI C. Bandit based Monte-Carlo planning[C] //Proceedings of the European Conference on MachineLearning. Berlin: Springer, 2006: 282 – 293.

共引文献291

同被引文献19

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部