期刊文献+

拟Clifford半环的性质与结构 被引量:1

STRUCTURE AND CHARACTERIZATIONSOF QUASI-CLIFFORD SEMIRINGS
下载PDF
导出
摘要 为了进一步研究加法半群为纯整群的半环,在左Clifford半环、矩形Clifford半环的延伸下,得出了一种新的半环,将它定义为拟Clifford半环.一个半环S称为拟Clifford半环,若S是矩形环Sα的分配格D(α∈D),并且E+(S)是一个正则带.同时结合拟Clifford半群的定义和性质,研究得出拟Clifford半环S的加法半群(S,+)为拟Clifford半群,并且给出了拟Clifford半环的具体性质和一个半环为拟Clifford半环的充分必要条件,最后在拟Clifford半群织积结构的前提下,得出了拟Clifford半环的织积结构. In order to further study the semirings whose additive semigroups are orhogroup.Under the extension of the left-Clifford semiring and the rectanglar-Clifford,a new semiring was obtained,which was defined as the quasi-Clifford semiring.A semiring S is called quasi-Clifford semiring,if S is a distribture lattice of a rectanglar ring Sα(α∈D)and E+(S)is a regular band.At the same time,combined with the structure of the quasi-Clifford semigroup,it was studied that the additive semigroup of the quasi Clifford semiring is the quasi-Clifford semigroup,and gives the sufficient and necessary conditions for a ring to be a quasi-Clifford semiring.Finally,on the premise of the spined product structure of quasi-semigroup,the spined product structure of quasi-Clifford semiring was obtained.
作者 韩姣 李刚 Han Jiao;Li Gang(School of Mathematics and Statistics,Shandong Normal University,250358,Jinan,China)
出处 《山东师范大学学报(自然科学版)》 CAS 2020年第1期46-50,共5页 Journal of Shandong Normal University(Natural Science)
基金 国家自然科学基金资助项目(30471138、30370928).
关键词 带半环 拟Clifford半群 拟Clifford半环 分配格同余 band semirings quasi-Clifford semigroups quasi-Clifford semirings distributive lattice congruences
  • 相关文献

参考文献4

二级参考文献29

  • 1F.Pastijn,郭聿琦.The lattice of idempotent distributive semiring varieties[J].Science China Mathematics,1999,42(8):785-804. 被引量:18
  • 2郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20
  • 3[1]Howie J M. Fundamentals of Semigroup Theory. Oxford: Clarendon Press, 1995
  • 4[2]Petrich M, Reilly N R. Completely Regular Semigroups. New York: Wiley, 1999
  • 5[3]Pastijn F. Idempotent distributive semirings II. Semigroup Forum, 1983, 26:151~166
  • 6[5]Pastijn F, Romanowska A. Idempotent distributive semirings I. Acta Sci Math, 1982, 44:239~253
  • 7[6]Pastijn F, Zhao X Y. Green's D-relation on the multiplicative reduct of an idempotent semiring. Archivum Mathematicum(Brno), 2000, 36:77~93
  • 8[7]Plonka J. On distributive quasi-lattices. Fund Math, 1967, 60:191~200
  • 9[8]R omanowska A, McKenzie R. Varieties of -distributive bisemilattices. Contributions to General Algebra,Heyn, Klagenfurt, 1979. 213~218
  • 10[9]Sen M K, Guo Y Q, Shum K P. A class of idempotent semirings. Semigroup Forum, 2000, 60:351~367

共引文献23

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部