期刊文献+

基于Tiny-YOLO的苹果叶部病害检测 被引量:11

A DETECTION METHOD FOR APPLE LEAF DISEASESBASED ON TINY-YOLO
下载PDF
导出
摘要 由于苹果叶片纹理复杂多变,相似病害难以判断,识别速度难以快速提升,苹果叶部病害的识别仍存在较大研究空间.为实现苹果叶部病害快速、有效的自动检测,本文将Tiny-YOLO应用于苹果叶部病害检测.实验结果表明,Tiny-YOLO模型的mAP和IoU分别为99.86%和83.54%,检测速度达280 FPS,能够有效实现苹果叶部病害检测. Given the complex and variable texture of apple leaves,similar diseases are difficult to judge and the recognition speed is difficult to be improved rapidly.At present,there is still a lot of room for improvement in the research of apple leaf diseases identification.Tiny-YOLO is a regression-based target detection method,which greatly simplifies the network structure on the basis of YOLO v2 network thus greatly improves the detection speed.In order to realize the rapid and effective automatic detection of apple leaf disease,Tiny-YOLO was applied to the detection of apple leaf disease.The experimental results showed that the mAP and IoU of the Tiny-YOLO model are 99.86%and 83.54%respectively,and the detection speed was up to 280 FPS,which has fully proved it an effective method for apple leaf diseases.
作者 邸洁 曲建华 Di Jie;Qu Jianhua(School of Business, Shandong Normal University,250358,Jinan,China)
出处 《山东师范大学学报(自然科学版)》 CAS 2020年第1期78-83,共6页 Journal of Shandong Normal University(Natural Science)
基金 山东师范大学创新创业训练计划项目资助.
关键词 Tiny-YOLO 目标检测 苹果叶部病害 Tiny-YOLO target detection apple leaf diseases
  • 相关文献

参考文献14

二级参考文献212

共引文献703

同被引文献145

引证文献11

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部