摘要
运用后向Gronwall型不等式及一个后向截断的方法,在g是后向绝对连续的假设条件下,证明非自治Reaction-Diffusion方程在正则p(p≥2)次可积空间上存在唯一的后向紧拉回吸引子,这种紧性体现了非自治系统关于时间依赖的独特性,展示了非自治系统和自治系统的本质区别.
Combing a backward Gronwall-type inequality and a truncation technique,we show that the non-autonomous Reaction-Diffusion equation has a unique backward compact pullback attractor in p(p≥2)-time integrable spaces when the time-dependent force is backward absolutely continuous.This backward compactness of the attractor reflects the time-dependent feature of the non-autonomous dynamical system,and reveals the essential distinction between non-autonomous systems and autonomous systems.
作者
佘连兵
张文林
李扬荣
SHE Lianbing;ZHANG Wenlin;LI Yangrong(School of Mathematics and Information Engineering,Liupanshui Normal University,Liupanshui 553004,Guizhou;School of Mathematics and Statistics,Southwest University,Chongqing 400715)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2020年第4期492-497,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11571283)
贵州省教育厅自然科学基金(KY[2019]139、[2019]143)
贵州省科学技术基金(黔科合基础[2020]1Y007)。