期刊文献+

钢板表面缺陷图像非均匀光照校正及分割算法 被引量:7

Non-uniform illumination correction and segmentation algorithm for steel plate surface defects images
原文传递
导出
摘要 针对钢板表面缺陷图像光照不均匀的问题,首先根据图像的亮度与光照分量和反射分量的相关性,采用多尺度高斯函数方法提取图像的光照分量并分离出反射分量.然后根据光照分量的分布情况调整二维(2D)伽玛函数的参数,实现光照分量分布不均的自适应校正,再将校正后的光照分量与原有的反射分量融合得到光照均匀的新图像.最后采用遗传算法选择最大熵阈值进行缺陷分割.结果表明:钢板表面缺陷图像的非均匀光照得到了有效改善,缺陷细节得到了较好保持;图像阈值分割缩短了寻找阈值的时间,能够有效检测出钢板表面的多种缺陷. Aiming at the non-uniform illumination of the steel plate surface defects images,according to the correlation between the brightness of the image and the illumination component and the reflection component,the multi-scale Gaussian function method was used to extract the illumination component of the image and separate the reflection component firstly.Then,the parameters of the two-dimension(2D)Gamma function were adjusted according to the distribution of the illumination component to realize the adaptive correction of the non-uniform distribution of the illumination component.Furthermore,the new image with uniform illumination was obtained by fusing the corrected illumination with the original reflection component.Finally,genetic algorithm was used to select the maximum entropy threshold for defects segmentation.Results show that the non-uniform illumination of the steel plate surface defects images are effectively improved,and the defects details are well maintained;the image threshold segmentation shortens the time to find the threshold,which could effectively detect a variety of defects of the steel plate surface.
作者 汤勃 孔建益 王兴东 陈黎 TANG Bo;KONG Jianyi;WANG Xingdong;CHEN Li(School of Mechanical and Automation Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第5期13-18,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51874217)。
关键词 非均匀光照 钢板表面缺陷 多尺度高斯函数 遗传算法 最大熵阈值 non-uniform illumination steel plate surface defects multi-scale Gaussian function genetic algorithm maximum entropy threshold
  • 相关文献

参考文献3

二级参考文献19

  • 1徐科,孙浩,杨朝霖,张希,王春梅.形态滤波在中厚板表面裂纹在线检测中的应用[J].仪器仪表学报,2006,27(9):1008-1011. 被引量:7
  • 2宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 3邱鸿钟.大学生心理卫生[M].广州:广东高等教育出版社,1997.198-201.
  • 4黄希庭.当代大学生心理特点与教育[M].上海:教育出版社,2001,4..
  • 5樊富明.大学生心理健康教育研究[M].北京:清华大学出版社,2002,11..
  • 6Sahoo P K,Computer Vision Graphics Image Processing,1988年,41卷,233页
  • 7宋克臣,颜云辉,李骏,等.基于邻域信息评估的热轧钢板表面缺陷图像识别方法:中国,201310210470.6[P].2013.05.30.
  • 8DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution representation[J]. IEEE Trans. Image Process, 14(12): 2091-2106. image 2005,.
  • 9JENS K. Tetrolet transform: A new adaptive Haar wavelet algorithm for sparse image representation[J]. VisCommun Image R, 2010, 21(4): 364-374.
  • 10ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by loacally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.

共引文献153

同被引文献90

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部