摘要
通过两步法制备了TiS2纳米片多孔负极材料。以钛块为钛源,采用直流电弧等离子体法在H2与Ar的混合气氛中制备TiH1.924纳米粒子作为前驱体,与升华硫共混加热硫化得到TiS2纳米片多孔负极材料。对材料进行X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、拉曼(Raman)等表征,XRD与Raman结果显示得到晶化完全的TiS2纳米材料;TEM与SEM结果表明TiS2微观形貌呈纳米片状,纳米片沿空间任意方向生长形成多孔结构。以TiS2纳米片多孔结构作为锂离子电池负极材料研究其电化学储锂性能,500 mA/g电流密度下循环时,其首次充放电比容量分别为816.0、1193.0 mAh/g,50次循环后,容量仍保持550 mAh/g;在5 A/g的高电流密度下仍维持有100 mAh/g的容量,表现出优异的循环稳定性和充放电可逆性。
In this paper,TiS2 nanosheet porous structure was prepared via a facile two-step process.The precursor,TiH1.924 nanoparticles,were prepared by DC arc-discharge plasma method in the mixed atmosphere of H2 and Ar with titanium bulk as the titanium source,then blended with sublimated sulfur and heated to obtain the TiS2 nanosheet porous structure.The samples were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),Raman and so on.XRD and Raman results showed that the as-synthesized TiS2 was fully crystallized.TEM and SEM results showed the nanosheet micro-morphology of the as-synthesized TiS2.The nanosheets grew in any direction to form a porous structure.The TiS2 nanosheet porous structure was used as the anode material of lithium-ion batteries to study its electrochemical lithium storage performance.The first charge-discharge specific capacities under the current density of 500 mA/g were 816.0 mAh/g and 1193.0 mAh/g,respectively.After 50 cycles,the capacity remained a capacity of 550 mAh/g.Even under a high current density of 5 A/g,it still maintained a capacity of 100 mAh/g,showing excellent cycle stability and charge-discharge reversibility.
作者
罗倩
黄昊
LUO Qian;HUANG Hao(Key Laboratory of Energy Materials and Devices (Liaoning Province), School of MaterialsScience and Engineering, Dalian University of Technology, Dalian 116024, China)
出处
《功能材料》
EI
CAS
CSCD
北大核心
2020年第6期6022-6026,6061,共6页
Journal of Functional Materials
基金
中央高校基本科研业务费重点实验室专项经费资助项目(DUT20LAB123)
江苏省自然科学基金资助项目(BK20191167)。
关键词
锂离子电池
二硫化钛
纳米片
多孔结构
负极材料
lithium ion battery
titanium disulfide
nanosheets
porous structure
anode material