期刊文献+

黏滞阻尼器-基础隔震混合体系优化研究 被引量:7

Optimization research for base-isolated structures with fluid viscous dampers
下载PDF
导出
摘要 针对隔震层设置黏滞阻尼器的基础隔震结构,提出了非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)的黏滞阻尼器的参数多目标优化方法。采用Bouc-Wen模型模拟隔震层的力-变形行为,建立受控结构运动方程,并进行非线性时程分析,选用隔震层位移及上部结构顶部相对隔震层位移为优化目标,采用NSGA-Ⅱ遗传算法优化得Pareto最优前沿解集。以某六层基础隔震结构为例进行数值分析,通过分析隔震层振动响应的快速傅里叶变换(FFT)谱及反应谱,以及通过调整优化目标的约束条件及参数的优化范围,利用NSGA-Ⅱ算法获得了较为集中的阻尼器参数分布,然后通过其它地震波验证了黏滞阻尼器的减震效果。结果表明,优化所得阻尼器能有效减少了隔震层的位移;当优化所得阻尼器对上部结构地震响应不利时,可通过降低阻尼器的减震效果使上部结构地震响应控制在合理范围内;不同地震波作用下阻尼器减震效果存在差异,在第一周期范围内,当隔震层的激励频率趋向低频时,阻尼器对隔震层位移控制效果越好;阻尼器减震效果与隔震层的附加阻尼有关,提供过大的附加阻尼比对上部结构较高阶动力反应不利;设计者基于隔震层位移控制的阀值及缩小的阻尼器参数优化范围,可获得应用于实际工程的阻尼器参数。 For the base-isolated structure with fluid viscous dampers in isolation layer,a parametric multi-objective optimization method of fluid viscous damper using non-dominated sorting genetic algorithm(NSGA-Ⅱ)was proposed.Bouc-Wen model was applied to simulate the isolation layer’s force-deformation behavior.The motion equation was established for time-history analysis.The total displacement of the isolation layer and superstructure were selected as the optimization objective.The Pareto optimal front can be gained through algorithm.A six-storey base-isolated structure was selected as an example of numerical analysis.The vibration responses of the isolation layer were selected for FFT spectrum analysis and response spectrum analysis.By adjusting the constraint of optimization target and the optimization range of the parameters,NSGA-Ⅱwas also used to obtain a more concentrated parameter distribution,and the effectiveness of the damper was verified by other earthquake.The results show that the optimal dampers can effectively reduce the displacement of isolation layer;for some earthquake,the optimal dampers may be detrimental to the seismic response of the superstructure.However,the seismic response of the superstructure can be kept in acceptable range by reducing the effectiveness of fluid viscous damper;the damper effectiveness depends on the type of earthquake.When the main excitation frequency of the isolation layer tends to be lower in the range of first mode frequency,the damper has better effectiveness in controlling the displacement of isolation layer;the damper effectiveness is correlated with the acceptable supplemental damping of isolation layer;the excessive supplemental damping is not favorable to the dynamic response of the superstructure;according to the threshold of the displacement of the isolation layer and the reduced optimal range of the damper parameters,the damper parameters that can be applied to actual projects could be obtained.
作者 陈瑞生 吴进标 刘彦辉 Marco Donà 金建敏 CHEN Ruisheng;WU Jinbiao;LIU Yanhui;Marco Donà;JIN Jianmin(Zhejiang University of Technology Engineering Design Group Co.,Ltd.,Hangzhou 310014,China;Earthquake Engineering Research&Test Center,Guangzhou University,Guangzhou 510405,China;Department of Civil,Architectural and Environmental Engineering(ICEA),University of Padova,Padova 35131,Italy)
出处 《振动与冲击》 EI CSCD 北大核心 2020年第11期93-100,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(51778163) 广州市科技计划项目(201707010333) 国家重点研发计划重点专项(2016YFE0127600) 广东省教育厅创新团队项目(2016KCXTD016)。
关键词 基础隔震体系 时程分析 遗传算法 谱分析 阻尼器参数选取 base isolation system time history analysis genetic algorithm spectrum analysis damper selection
  • 相关文献

参考文献2

二级参考文献17

  • 1李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:65
  • 2汪大洋,周云,王烨华,丁鲲.粘滞阻尼减震结构的研究与应用进展[J].工程抗震与加固改造,2006,28(4):22-31. 被引量:56
  • 3韦勇,陈国平.一般阻尼结构的模态阻尼优化设计[J].振动工程学报,2006,19(4):433-437. 被引量:15
  • 4李俊宝,刘华,张令弥.桁架结构振动阻尼控制中阻尼构件的优化配置[J].振动.测试与诊断,1996,16(4):26-30. 被引量:2
  • 5Ninoslav. An efficient algorithm for damper optimization for linear vibrating systems using Lyapunov equation [J]. Journal of Computational and Applied Mathematies, 2004,172(1) :169-182.
  • 6Gtirgoze M, Mfiller P C. Optimal positioning of dampers in multi-body systems[J]. Journal of Sound and Vibration, 1992,158(3): 517-530.
  • 7Bai Yuanqiang, Karolos M G. Damping parameter design optimization in structural systems using an ex- plicit H∞norm bound [J]. Journal of Sound and Vibration, 2009,319 (3-5) : 795-806.
  • 8Rex K K, Sharon L P. D-optimal designs for sensor and actuator locations [J]. Computers & Operations Research, 2002,29(6):701-713.
  • 9Izuru T. Optimal damper positioning in beams for minimum dynamic compliance [J]. Computer Methods in Applied Mechanics and Engineering, 1998,156 (1-4):363-373.
  • 10Li Qiusheng, Liu Dikai, Tang J, et al. Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms [J].Journal of Sound and Vibration, 2004,270(4-5): 611-624.

共引文献8

同被引文献44

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部