期刊文献+

悬臂梁挠曲电俘能器的力电耦合模型及性能分析 被引量:6

Electromechanical Coupling Model and Performance Analysis of the Unimorph Cantilever Beam-based Flexoelectric Energy Harvester
原文传递
导出
摘要 挠曲电效应指应变梯度在电介质中引起的电极化现象,是一种普遍存在的力电耦合行为.应变梯度与材料的尺寸成反比,因此挠曲电效应有望在纳米尺度主导材料的物理性质,尤其是力电耦合性能.论文建立了悬臂梁挠曲电俘能器的理论模型,基于哈密顿原理得到了悬臂梁挠曲电俘能器的控制方程和相应的边界条件;进一步,得到了悬臂梁挠曲电俘能器的输出电压频率响应和功率密度频率响应随悬臂梁的振动频率、外电路阻抗、挠曲电层厚度以及弹性层模量的变化规律.聚偏氟乙烯和环氧树脂层合挠曲电悬臂梁俘能器模型的数值结果表明输出电压频率响应和功率密度频率响应在共振频率点取得最大值,且随着各阶模态对应的共振频率的增加悬臂梁挠曲电俘能器的输出电压和功率密度均增加.此外,计算结果还表明悬臂梁俘能器存在最佳匹配阻抗,在匹配阻抗附近悬臂梁俘能器的输出功率密度随挠曲电层厚度的减小而增大,表现出明显的尺寸效应.并且输出电压随弹性层模量的增大而减小.论文工作提供了一种基于挠曲电效应的悬臂梁俘能器的理论模型,为悬臂梁俘能器的设计提供了理论依据. Flexoelectric effect refers to the strain-gradient-induced electric polarization, which is a universal electromechanical coupling effect in all solid dielectrics due to the breaking of inversion symmetry by strain gradient. Since strain gradients are inversely proportional to the dimensional characteristics of materials, the electromechanical coupling phenomenon of materials at nanoscale is expected to be dominated by the flexoelectric effect, instead of the piezoelectric effect. The mechanical Energy harvesters based on flexoelectric effect are considered one of the most promising applications in microelectromechanical systems(MEMS) and nanoelectromechanical systems(NEMS). In the present work, a theoretical model for the flexoelectric energy harvester is established. The governing equations and corresponding boundary conditions are derived from the energy variation principle. In addition, the performance of the flexoelectric unimorph cantilever beam-based energy harvester is analyzed based on the theoretical model. The effects of resonance frequency, resistance of circuit, thickness of flexoelectric layer, and Young’s modulus of elastic layer on the output voltage frequency response and output power density frequency response are discussed. Particularly, the numerical analysis for cantilever beam-based flexoelectric energy harvester fabricated by PVDF polymer thin film and epoxy substrate is obtained. It is found that the maximum output voltage frequency response and output power density frequency response appear at the resonance frequencies of the cantilever energy harvester. The output voltage and the output power density increase with the increase of the resonance frequencies at each mode. The numerical results also show that there exists an optimum resistance. Furthermore, the output power density increases with the decrease of the thickness of flexoelectric layer when the resistance is close to its optimum value. Moreover, it is found that the output voltage decreases with the increase of the Young’s modulus of elastic layer. The numerical results in this paper can be helpful in designing cantilever beam-based flexoelectric energy harvesters.
作者 陈春林 李肇奇 梁旭 胡淑玲 申胜平 Chunlin Chen;Zhaoqi Li;Xu Liang;Shuling Hu;Shengping Shen(State Key Laboratory for Strength and Vibration of Mechanical Sructures,School of Aerospace,Xi'an Jiaotong University,Xi'an,710049;Shaanxri Engineering Laboratory for Vibration Control of Aerospace Structures,School of Aerospace,Xi'an Jiaotong University,Xi'an,710049)
出处 《固体力学学报》 CAS CSCD 北大核心 2020年第2期159-169,共11页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11602189,11632014)资助。
关键词 挠曲电效应 悬臂梁 力电耦合 能量收集 模态分析 flexoelectric effect cantilever beam electromechanical coupling energy harvesting modal analysis
  • 相关文献

参考文献1

二级参考文献69

  • 1Jo W, Dittmer R, Acosta M, et al. Electroceram [J] , 2012 (29) : 71-93.
  • 2Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics [ M ]. Lon- don: Academic Press, 1971.
  • 3EU-Commission Directive 2013/28/EU of 17 May 2013 Amen- ding AnnexII to Directive 2000/53/EC of the European Parlia- ment and of the Council on End-of-Life Vehicles [ S]. 2013.
  • 4EU-Commission Directive 2000/71/EC of 7 November 2000 to Adapt the Measuring Methods as Laid Down in Annexes I, II,III and IV to Directive 98/70/EC of the European Parliament and of the Council to Technical Progress as Foreseen in Article 10 of That Directive [S]. 2000.
  • 5http: //www. miit. gov. cn/nl1293472/index, html.
  • 6Saito Y, Takao H, Tani T, et al. Nature [ J] , 2004, 432 (7013): 84-87.
  • 7Hollenstein E, Davis M, Damjanovic D, et al. Applied Physics Letters [J], 2005, 87 (18): 182905.
  • 8Zhang S J, Xia R, Shrout T R. Applied Physics Letters [ J ], 2007, 91 (13): 132 913.
  • 9Rfidel J, Jo W, Seifert K T P, et al. Journal of the American Ce- ramic Society [J], 2009, 92 (6): 1 153-1 177.
  • 10Chu B J, Chen D R, Li G R, et al. Journal of the European Ceramic Society [J], 2002, 22 (13): 2 115-2 121.

共引文献19

同被引文献26

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部