期刊文献+

运输需求与成本不确定下的枢纽港选择 被引量:5

Determine Hub Port Location with Uncertain Demand and Cost
下载PDF
导出
摘要 针对轴辐式网络中的枢纽港选择问题,在集装箱航运网络中,考虑运输需求与成本的不确定,根据数据变化规律,构建多个模型.根据轴辐式网络的运输环节,使用成本函数表征枢纽港间运输成本,构建枢纽港选择的确定性模型;基于此,针对航运需求的离散特性,构建需求不确定的随机模型进行枢纽港选择;基于运输成本难以预测的特点,结合实际数据,使用极小极大值法构建成本不确定的枢纽港选择模型;然后,结合两者构建运输需求与运输成本同时不确定的枢纽港选择模型.采用欧洲集装箱运输网络实际数据对模型进行验证,求解各因素不确定下枢纽港选择的最优方案,并针对结果进行对比分析,为班轮公司优化航线提供参考. This study focuses on the hub port location problem in the hub-and-spoke network.Multiple models were developed with consideration of the data change trends and the uncertainty of transportation demand and cost in the container shipping network.Considering the transportation links of the hub-and-spoke network,the study used a cost function to characterize the transportation costs between hub ports and developed a deterministic model for hub port selection.A stochastic model with uncertain demand was then developed for hub port selection with the discrete shipping demand.Next,a MINMAX method was used to develop a hub port location model with uncertain cost and actual data as input.Then the hub port location model was proposed with uncertain transportation demand and cost.The actual data of the European container transportation network was used to verify the model and solve the optimal choice of the hub port under various uncertain factors.A comparative analysis of the results was also included.This study provides a reference for the liner company to optimize the route.
作者 赵旭 许航 刘娇 ZHAO Xu;XU Hang;LIU Jiao(College of Transportation Engineering,Dalian Maritime University,Dalian 116026,Liaoning,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第3期1-5,13,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家社会科学基金(18VHQ005) 国家自然科学基金(71572022) 交通运输部软科学研究项目(2015332225470).
关键词 水路运输 枢纽港选择 极小极大值法 不确定性 waterway transportation hub port location MINMAX method uncertainty
  • 相关文献

参考文献1

二级参考文献14

  • 1Bruno G, Gendreau M, Laporte G. A heuristic for the location of a rapid transit line[J]. Computers & Operations Research, 2002, 29(1): 1-12.
  • 2Laporte G, A Mesa J, A Ortega F, et al. Maximizing trip coverage in the location of a single rapid transit alignment[J}. Annals of Operations Research, 2005,136 (1): 49-63.
  • 3Li Z C, Lam W H, Wong S C, et al. Design of a rail transit line for profit maximization in a linear transportation corridor[J}. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(1): 50-70.
  • 4List G F, Wood B, Nozick L K, et al. Robust optimization for fleet planning under uncertainty[J}. Transportation Research Part E, 2003, 39(3): 209-227.
  • 5Yin Y F, Madanat M S, Lu X Y. Robust improvement schemes for road networks under demand uncertainty[J}. European Journal of Operational Research, 2009, 198 (2): 470-479.
  • 6Yan Y D, Meng Q, Wang S A, et al. Robust optimization model of schedule design for a fixed bus[J]. Transportation Research Part C: Emerging Technologies, 2012, 25:113-121.
  • 7Kara S S, Onut S. A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: The case of paper recycling[J}. Expert Systems with Applications, 2010,37(9) : 6129-6137.
  • 8Shishebori D, Babadi A Y. Robust and reliable medical services network design under uncertain environment and system disruptions[J}. Transportation Research Part E: Logistics and Transportation Review, 2015, 77: 268- 288.
  • 9Liu X C, He S W, Song R, et al. Robust optimization model and algorithm for railway freight center location problem in uncertain environment[J}. Computational Intelligence and Neuroscience, 2014, (2014): 1-7.
  • 10Albert R, Barab6si A. statistical mechanics of complex network[J}. Review of Modern Physics, 2002, 74: 47-97.

共引文献8

同被引文献33

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部