期刊文献+

单线纯电动公交车辆柔性调度优化 被引量:20

Optimizing Flexible Vehicle Scheduling for Single-line Battery Electric Buses
下载PDF
导出
摘要 为解决纯电动公交车因充电错过最佳接续发车班次使公交车数量增加的问题,以公交车辆运营总成本最小为目标,构建允许存在误时发车的纯电动公交车辆柔性调度优化模型,通过最大可能地增加一辆公交车可执行班次的数量,减少车辆使用数量及运营成本.设计遗传算法求解模型,为提高求解效率,将时刻表按班次发车顺序进行排序,以减少染色体数量.数值实验结果表明:与纯电动公交车辆刚性调度相比,柔性调度能够极大地减少车辆使用数量;误时上限的取值对公交运营成本影响较大. In electric bus scheduling,some electric buses may miss the time of consecutive trip due to long battery charging time,which normally lead to an increase in the use of buses.This study aimed to minimize the total operating cost of buses and developed a flexible electric bus scheduling optimization model.The model allows some buses to departure late but increase the number bus trips,and thus to reduce the number of operating vehicles and operating costs.A genetic algorithm was designed to solve the model.The study ranked bus trips in sequential order of the departure time to reduce the number of chromosomes,and to further improve the solution efficiency.A numerical experiment was performed and the results showed that the flexible electric bus scheduling method was able to significantly reduce the number of vehicles used,compared with fixed bus scheduling.The results also show that the delay time has a great impact on the total operating cost.
作者 唐春艳 杨凯强 邬娜 TANG Chun-yan;YANG Kai-qiang;WU Na(College of Transportation Engineering,Dalian Maritime University,Dalian 116026,China;College of Transportation Engineering,Chang'an University,Xi'an 710064,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第3期156-162,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(71801027) 中央高校基本科研业务费专项资金(3132020162).
关键词 城市交通 柔性调度 遗传算法 纯电动公交车 误时发车 urban traffic flexible scheduling genetic algorithm electric bus delayed departure
  • 相关文献

参考文献4

二级参考文献31

  • 1席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:349
  • 2TORONTO BERINZON MARIAN. Development of a transportation data processing system for metropolitan[A]. Proceedings of the IEEE-IEE Vehicle Navigation and Information Systems Conference [C]. Ottawa:IEEE-IEE, 1993. 186-190.
  • 3LUCB , STEFAN S. Genetic algorithms : theory and application [J]. European Journal of Operation Research,1997,38(2):13-23.
  • 4BENYAHIA I , POTVIN J Y . Decision support for vehicle dispatching using genetic programming [J].IEEE Transaction on System, Man, and Cybernetics,1998,28(3) :306-314.
  • 5SONG Sun - hun . Vehicle scheduling problems with time-varying speed [J ]. Computers & Industrial Engineering, 1997,33 (3-4) :853- 856.
  • 6MAO J,WU Z. Genetic algorithm and the application for job-shop group scheduling[A]. Proceeding of the International. Conference on intelligent Manufacturing[C]. Wuhan : Wuhan University Press, 1995.85-90.
  • 7Cortes C. E. , Jayakrishnan R. Design and operational con-cepts of a high coverage point-to-point transit system [ J ].Transportation Research Record 1783,2002: 178 - 187.
  • 8Horn M. E. T.. Fleet scheduling and dispatching for demandresponsive passenger services [ J ]. Transportation ResearchPart C, 2002,10; 35 -63.
  • 9Quadrifoglio L. , Dessouky M. M, Mobility allowance shuttletransit ( MAST) services: formulation and simulation compari-son with conventional fixed route bus services[ R]. Modeling,Simulation and Optimization ( MSO) , 2004.
  • 10Seyed Mohammad Nourbakhsh,Yangfeng Ouyang. A struc-tured flexible transit system for low demand areas [ J ]. trans-portation research part b,2012,46:204 - 216.

共引文献71

同被引文献121

引证文献20

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部