期刊文献+

智能网络系统低匹配度数据深度挖掘算法研究 被引量:1

Research on deep mining algorithm for low matching data in intelligent network system
下载PDF
导出
摘要 常规的挖掘算法在处理智能网络系统中的低匹配度数据时,因迭代次数过多造成运算节点上的数据挖掘完成度较低.为此,提出智能网络系统低匹配度数据深度挖掘算法研究.经过数据变换和数据规约处理数据,将数据转换成更适合深度挖掘的格式,最大限度地精简数据量,利用神经网络模型更新挖掘规则,同时将数据结构中冗余连接与节点去掉,采用I/O输入输出方式循环计算完成数据深度挖掘.测试结果表明:相同的测试条件下,与常规的挖掘算法相比,提出的低匹配度数据深度挖掘算法在不同的运算节点上的挖掘完成度更高,始终保持在85%~99%之间,适合应用在智能网络系统低匹配度数据深度挖掘中. Conventional mining algorithms deal with low-matching data in intelligent network systems,because the number of iterations leads to a low degree of completion of data mining on computing nodes.Therefore,a deep mining algorithm for low matching data in intelligent network system is proposed.Transform the data into a format more suitable for deep mining to process the data through data transformation and data reduction.This method can minimize the amount of data.Mining rules are updated using neural network modules,and redundant connections and nodes are removed from the data structure.Data deep mining is completed using I/O input and output method cyclic calculation method.Experimental results show that the experimental results show that compared with the conventional mining algorithms in the same test conditions,the low matching degree data deep mining algorithm proposed in this paper has higher mining completion on different computing nodes,which is always between 85%and 99%.It is suitable for the deep mining of low-matching data in intelligent network system.
作者 韩高峰 HAN Gaofeng(Computer Enqineering College,Anhui Wenda University of Information Engineering,Hefei Anhui 231201)
出处 《宁夏师范学院学报》 2020年第4期82-88,共7页 Journal of Ningxia Normal University
基金 2018年安徽省教育厅省级质量工程重点项目(2018jyxm1394) 2019年度校级重点科研项目(XZR2019A06).
关键词 智能网络 神经网络 低匹配度 数据挖掘 Intelligent network Neural network Low matching degree Data mining
  • 相关文献

参考文献15

二级参考文献83

共引文献171

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部