期刊文献+

高压涡轮叶尖压力侧开槽对气动换热特性的影响 被引量:1

Effect of High Pressure Turbine Pressure-side Groove Structure on Aerothermal Performance
下载PDF
导出
摘要 带凹槽涡轮叶尖相比平叶尖会有更低的气动损失,然而在腔底的前半部分区域存在着高换热系数区。为了解决这一问题,通过研究凹槽叶尖压力侧设计槽结构对涡轮气热性能的影响,结合实验和数值模拟结果,结果表明具有压力侧槽结构的凹槽叶尖相比于没有槽结构的凹槽叶尖,高换热区面积减小,气动效率提升。同时,研究不同大小的槽对气热性能影响,结果表明通过槽进入腔内的气流量会大幅影响叶顶间隙和腔内的流场,叶尖区域换热及气动性能随着槽的大小的改变而不同。 Many studies have illustrated that the turbine blade with a squealer tip has less aerodynamic loss than the one with a flat tip.However,there is a high heat transfer coefficient(HTC)area in the front half of the cavity bottom.To solve the problem,the effect of squealer-rim pressure-side groove structure on turbine blade aerothermal performance was studied.Combining the experimental and numerical simulation results,it can be concluded that the tip of the groove with a pressure side groove structure is smaller than the groove tip without a groove structure,the area of the high heat transfer area is reduced,and the aerodynamic efficiency is improved.Meanwhile,by studying the effect of grooves of different sizes on the aerothermal performance,it is found that the air flow into the cavity through the groove will greatly affect the tip clearance and the flow field in the cavity.
作者 钱梦成 卢少鹏 滕金芳 QIAN Meng-cheng;LU Shao-peng;TENG Jin-fang(School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《科学技术与工程》 北大核心 2020年第15期6268-6272,共5页 Science Technology and Engineering
基金 国家自然科学基金(51506120)。
关键词 涡轮叶尖 槽结构 泄漏流 换热系数 气动效率 turbine blade tip groove structure over-tip leakage flow heat transfer coefficient aerodynamic efficiency
  • 相关文献

参考文献3

二级参考文献23

  • 1朱彦伟,马争胜,高扬.影响叶片表面换热主要因素的分析[J].硅谷,2008,1(20):44-45. 被引量:3
  • 2Wang H P, et al. Flow visualization in a linear turbine cascade of high performance tuine blade. ASME, Journal of Turbomachinery, 1997;119 (1) :1-8.
  • 3Friedrichs S, Hodson H P, Dawes W N. Distribution of film-cooling effectiveness on a turbine endwall measured using the ammonia and Diazo technique. ASME, Journal of Turbomachinery, 1996 ; 118 (4) : 613-621.
  • 4Friedrichs S, Hodson H P, Dawes W N. The design of an improved endwall film-cooling Configuration. ASME Paper 98-GT- 483, ! 998.
  • 5Sharma O P, Butler T L. Predictions of endwall losses and secondary flows in axial flow turbine cascades. ASME Journal of Turbomachin- ery, 1987 ;109:229-236.
  • 6Levchenya A M, Smimov E M. CFD-analysis of 3D flow structure and endwall heat transfer in a transonic turbine blade cascade: effects of grid refinement. In: CD-ROM Proceedings of West-East HighSpeed Flow Field Conference-WEHSFF'07. Moscow, Russia, 2007; 19-22 November : 12.
  • 7Praisner, T J, Smith, C R. The dynamics of the horseshoe vortex and associate endwall heat transfer-Part I. Temporal behavior. ASME Journal of Turbomachinery ,2006 ; 128:747-754.
  • 8Praisner T J, Smith C R. The dynamics of the horseshoe vortex and associate endwall heat transfer-Part II. Time-mean results. ASME Journal of Turbomachinery, 2006 ; 128:75-762.
  • 9Thole K A, Knost D G. Heat transfer and film-cooling for the endwall of a first stage turbine vane. International Journal of Heat and Mass Transfer,2005 ;48 ( 2005 ) :5255-5269.
  • 10Barigozzi G, Franchini G, Perdichizzi A, et al. Film cooling of a con- toured endwall nozzle vane through fan-shaped holes. International Journal of Heat and Fluid Flow,2010; 31:576-585.

共引文献2

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部