期刊文献+

大粒径氧化石墨及石墨烯的制备与表征 被引量:4

Preparation and characterization of large size graphite oxide and graphene
下载PDF
导出
摘要 以0.10、0.15、0.18、0.30 mm 4种不同粒径的石墨为原料,采用密闭氧化、氨-水合胼还原法,经过2个控温阶段制备了10~20μm大粒径氧化石墨(GO)与石墨烯,并通过正交实验、单因素实验优化了制备条件.测定了GO与石墨烯的傅里叶红外光谱、拉曼光谱及热稳定性.用扫描电镜、X线衍射光谱、原子力显微镜测试了产品的结构与石墨烯片层厚度.实验结果表明:石墨粒径越小,片层剥离程度越高,GO的产率、热稳定性也均有提高.石墨烯在800℃下残炭率高于80%,剥离层厚度约为1 nm.本实验研究为制备大粒径GO与石墨烯提供了一种可行的实验方法. With different size of 0.10、0.15、0.18、0.30 mm of natural graphiteas raw material,graphite oxide(GO)and graphene with a size of 10~20μm were prepared by pressurized oxidation,ammonia-hydrazine-based multiplex reduction through two different temperature stages.The reaction conditions were optimized by orthogonal test and single factor test.The Fourier transform infrared spectroscopy,Raman spectrometer,thermal stability of the GO and graphene were investigated.Morphology,structure and layer thickness of GO and graphene were investigated by Scanning electron microscopy,X-ray diffraction photometer,atomic force spectroscopy.Results show that GO yield,sheet peeling degree and thermal stability are improved with the decreasing graphite size.The residue yields of the prepared graphene at 800℃are all above 80%,and it presents a thickness of about 1.0 nm.The study provides a practical method for the preparation of GO and graphene with large size.
作者 常然 庞秀言 李泽江 信亚平 CHANG Ran;PANG Xiuyan;LI Zejiang;XIN Yaping(College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;Flame Refardant Material and Processing Technology Engineering Technology Research Center of Hebei Province,Baoding 071002,China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2020年第3期260-268,共9页 Journal of Hebei University(Natural Science Edition)
基金 河北省自然科学基金资助项目(B2015201028)。
关键词 氧化石墨 石墨烯 密闭氧化法 粒径 低温反应 graphite oxide graphene pressurized oxidation particle size low temperature reaction
  • 相关文献

参考文献3

二级参考文献18

  • 1郑晶,黄晓蓉,李耀平,李小晶,林杰.鳗鱼中恩诺沙星残留量的酶联免疫检测方法[J].食品科学,2004,25(10):247-250. 被引量:41
  • 2贺罗曼.环氧树脂胶黏剂[M].北京:中国石化出版社,2004,41-42.
  • 3Balandin A, Ghosh S, Bao W, et ah Superior Thermal Conductivity of Single-Layer Graphene [J]. Nano Letters, 2008, 8:902-907.
  • 4Yu A, Ramesh P, Itkis M E, et al. Graphite Nanoplatelet- Epoxy Composite Thermal Interface Materials [J]. Journal of Physical Chemistry C, 2007, IIi: 7565 -7569.
  • 5Wang S, Madhava T, Qiu J, et al. Thermal Expansion of Grapheme Composites [J]. Macromolecules, 2009, 42: 5251-5255.
  • 6Fukushima H, Drzal L T, Rook B P, et al. Thermal Conductivity of Exfoliated Graphite Nanoeomposites [J]. Journal of Thermal Analysis and Calorimetry, 2006, 85: 235-238.
  • 7Wei L M, Wu F, Shi D W, et al. Spontaneous Intercalation of Long-Chain Alkyl Ammonium Into Edge-Selectively Oxidized Graphite to Efficiently Produce High-Quality Grapheme [J]. Scientific Reports, 2013, 3:2636.
  • 8Geng X M, Guo Y F, Li D F, et al. Interlayer Catalytic Exfoliation Realizing Scalable Production of Large-Size Pristine Few-Layer Graphene [J] Scientific Reports. 2013, 3:1134.
  • 9Prasher R S, Chang J Y, Sauciuc I, et al. Nano Micro Technology-Based Next-Generation Package-Level Cool- ing Solutions [J]. Intel Technology Journal, 2005, 9: 285- 296.
  • 10Shahil K M F, Balandin A A. Graphene-Multilayer Graphene Nanoeomposites as Highly Efficient Thermal In- terface Materials [J]. Nano Letters, 2012, 12:861-867.

共引文献14

同被引文献111

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部