期刊文献+

基于差分总变化量的时变图信号重构算法

Time varying graph signal reconstruction algorithm based on difference total variation
下载PDF
导出
摘要 图信号具有一定的网络拓扑结构,通过网络上的节点收集相关信号的数据。但是在数据收集过程中由于图信号具有时变特性,容易造成数据损失或错误。文中主要研究无权无向的时变图信号网络,对时变信号数据进行差分处理可以使得信号表现出更好的平滑特性。提出采用差分总变化量的方法对时变图信号数据重构,并使用均方根误差方法对重构结果做评价,通过实验仿真发现基于差分总变化量的方法可以取得较好的重构效果,从而验证了采用差分总变化量的可靠性。 Graph signals possess a certain network topology,and its collection of the relevant signal data is by network nodes.However,it is prone to result in data loss or error due to the time⁃varying characteristics of graph signals in the process of data collection.In this paper,the unweighted and undirected time⁃varying graph signals network is studied mainly.The difference processing of time⁃varying signal data can make the signal show its better smoothing characteristics.In this paper,the method of total difference variation is proposed to reconstruct the time⁃varying graph signal data,and the root⁃mean⁃square error method is used to evaluate the reconstruction results.It is found in the experimental simulation that the method based on the total difference variation can achieve good reconstruction results,which verifies the reliability of using the total difference variation.
作者 江瑞 JIANG Rui(MOE Key Laboratory of Cognitive Radio and Information Processing,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《现代电子技术》 北大核心 2020年第13期53-56,61,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61561014) 国家自然科学基金资助项目(61761014) 认知无线电与信息处理教育部重点实验室(CRKL170106) 广西研究生教育创新计划资助项目(YCBZ2017050)。
关键词 时变图信号 差分总变化量 信号重构 数据恢复 数据差分处理 重构结果评价 time⁃varying graph signal difference total variation signal reconstruction data recovery data difference processing reconstruction result evaluation
  • 相关文献

参考文献1

二级参考文献16

  • 1SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains [J]. IEEE Signal Processing Magazine, 2013,30(3) : 83-98.
  • 2SANDRYHAILA A, MOURA J M F. Discrete signal processing on graphs: Frequency analysis [J]. IEEE Transactions on Signal Processing, 2014,62(12) : 3042-3054.
  • 3SANDRYHAILA A, MOURA J M F. Discrete signal processing on graphs [J]. IEEE Transactions on Signal Processing, 2013,61(7) : 1644-1656.
  • 4ANIS A, GADDE A, ORTEGA A. Towards a sarnplig theorem for signals on arbitrary graph[C]//2014 IEEE International Conference on Aeoustics, Speech and Signal Processing(ICAP). Florence, Italy: IEEE Press, 2014: 3864-3868.
  • 5SHI X, FENG H, ZHAI M, et al. Infinite impulse response graph filters in wireless sensor networks [J]. IEEE Signal Processing Letters, 2015,22(8) : 1113-1117.
  • 6SHUMAN D I, VANDERGHEYNST P, FROSSARD P. Chebyshev polynomial approximation for distributed signal processing [C]//2011 International Conference on Distributed Computing in Sensor Systems and Workshops(DCOSS). Barcelona, Spain: IEEE Press, 2011: 1-8.
  • 7EGILMEZ H E, ORTEGA A. Spectral anomaly detection using graph-based filtering for wireless sensor networks[C] // 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy; IEEE Press, 2014.. 1085-1089.
  • 8DONG X, THANOU D, FROSSARD P, et al. Learning graphs from signal observations under smoothness prior [J]. arXiv preprint arXiv: 1406. 7842,2014.
  • 9LIU D, FLIERL M. Motion-adaptive transforms based on the laplacian of vertex-weighted graphs[C]// 2014 Data Compression Con{erence(DCC). Snowbird, UT, USA: IEEE Press, 2014: 53-62.
  • 10JALILI M. A graph weighting method for reducing consensus time in random geographical networks[C] //2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA). Perth, WA, Australia: IEEE Press, 2010: 317-322.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部