期刊文献+

基于改进小波变换的QRS特征提取算法研究 被引量:6

Research on QRS feature extraction algorithm based on improved wavelet transform
下载PDF
导出
摘要 心电图数据是分析人体心脏病理的基础,针对心电数据的QRS波形特征提取问题,提出一种基于改进小波变换的特征提取方法。首先,选用小波函数Coiflet对采集信号2层分解,然后进行去噪处理。最大限度地保留心电信号有用特征成分,采用极大值与斜率双重检测法进行QRS波中R峰的定位,进而准确提取QRS特征。最后利用MIT-BIH数据库验证算法的准确性和有效性。实验结果表明,该算法针对QRS波形特征识别精度达到了99.661%,具有更高的有效性。 ECG data is the basis of human heart pathological analysis.In allusion to the QRS waveform feature extraction of ECG data,a feature extraction method based on improved wavelet transform is proposed.The wavelet function Coiflet is selected to perform 2⁃layer decomposition of the ECG signal,and then signal denoising is performed.The useful characteristic components of ECG signal is retained to the greatest extent.The maximum value and slope double detection method is used to locate the R peak in the QRS wave,so as to accurately extract the QRS feature.The MIT⁃BIH database is used to verify the accuracy and effectiveness of the algorithm.The experiment results show that the proposed algorithm has a high accuracy for the QRS waveform feature recognition,and its accuracy reaches to 99.661%.Therefore,it is of higher effectiveness.
作者 侯晓晴 仝泽友 刘晓文 HOU Xiaoqing;TONG Zeyou;LIU Xiaowen(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221000,China;Internet of Things(Perception Mine)Research Center,China University of Mining and Technology,Xuzhou 221000,China)
出处 《现代电子技术》 北大核心 2020年第13期57-61,共5页 Modern Electronics Technique
基金 2017年国家重点研发计划项目:矿山安全生产物联网关键技术与装备研发(2017YFC0804401)。
关键词 QRS波识别 特征提取 心电信号 小波变换 信号去噪 R峰定位 QRS wave recognition feature extraction ECG signal wavelet transform signal denoising R peak positioning
  • 相关文献

参考文献6

二级参考文献37

  • 1叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].计算机应用,2006,26(7):1617-1619. 被引量:47
  • 2Friensen G M,Jannett T C,Jadallah M A,et al.Comparison of the noise sensitivity of nine QRS detection algorithms [J].IEEE Trans on Biomed Eng,1990,37(1):85-98.
  • 3Afonso V X,Tompkins W J,Nguyen T Q,et al.ECG beat detection using filter banks [J].Trans on Biomed Eng,1999,46(2):192-202.
  • 4Ramakrishnan A G.Saha supratim ECG coding by wavelet-based linear prediction [J].IEEE Trans on Biomed Eng,1997,44(12):1253-1260.
  • 5LI Cuiwei,ZHENG Chongxun,TAI Changfeng.Detection of ECG characteristic points using wavelet transforms [J].Trans on Biomed Eng,1995,42(1):21-28.
  • 6Trahanias P E.An approach to QRS complex detection using mathematical morphology [J].IEEE Trans on Biomed Eng,1993,40(2):201-205.
  • 7Rosaria S,Carlo M.Artificial neural networks for automatic ECG analysis [J].IEEE Trans on Signal Processing,1998,46(5):1417-1425.
  • 8刘恒冰,韩世勤,刘晶.基于新阈值函数及最优尺度的小波去噪研究[J].计算机工程与应用,2007,43(24):72-74. 被引量:20
  • 9Kleiger RE,Stein PK,Bigger JT.Heart rate variability:measure- ment and clinical utility.Ann Noninvasive Electrocardi o/,2005,10(1):88-101.
  • 10Nagin VA,Selishchev SV.Implementation of algorithms for identification of QRS-complexes in real-time ECG systems. Biorned Eng,2001,3 5( 6):304-309.

共引文献56

同被引文献45

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部