期刊文献+

能源桩桩身横向变形试验研究 被引量:1

Experimental study on lateral deformation characteristics of energy piles
下载PDF
导出
摘要 关于地源热泵系统(GSHP)运行条件下的能源桩竖向变形特征研究已经取得了大量的成果,然而,目前对能源桩横向变形特征如何影响桩体摩阻力和传热特性的认识还不够充分。在模拟能源桩实际运行工况的条件下进行室内试验,测试了温度循环条件下桩身-岩土体接触界面的变形特征。试验结果表明:温度变化会使桩-土接触界面产生变形,其变形量足以使桩侧摩阻力发生变化,进而改变桩土接触条件并影响能源桩的传热效率。这些研究结论与现场桩身结构响应测试结果较为吻合:温度变化时能源桩桩身侧壁会产生横向的热胀冷缩,随着桩身横向变形,桩侧壁会产生桩侧摩阻力,其大小取决于桩壁深度和温差。 Vertical deformation characteristics of energy pile caused by ground source heat pump system(GSHP)operation have been studied widely.However,there is insufficient understanding on the influence of lateral deformation on friction and heat transfer of energy pile.In this paper,laboratory tests were carried out to monitor the deformation characteristics of sandstone-concrete interface under the condition of temperature cycling.The results showed that the temperature change would cause the deformation of the interface between the energy pile and the rock,which was enough to change the side resistance of the pile,and then changed the sandstone-concrete interface condition,thus affecting the heat transfer efficiency of energy pile.This was in agreement with in-situ test results.It was found that the pile body showed lateral heat-expansion and cold-contraction.Pile side friction would generate on the side wall of the pile due to lateral deformation,which varied with the depth of the pile wall and temperature difference.
作者 张琦 王琰 赵海丰 桂树强 骆进 ZHANG Qi;WANG Yan;ZHAO Haifeng;GUI Shuqiang;LUO Jin(Faculty of Engineering,China University of Geosciences,Wuhan 430074,China;Zhejiang Engineering Investigation Institute,Ningbo 315000,China;Changjiang Institute of Survey,Planning,Design and Research,Wuhan 430010,China)
出处 《人民长江》 北大核心 2020年第5期191-196,共6页 Yangtze River
基金 国家自然科学基金资助项目“周期性冷热负荷下白垩纪红砂岩热扩散时效规律研究”(KZ16W30035)。
关键词 能源桩 地源热泵 螺旋型埋管 桩体横向变形 桩侧摩阻力 接触界面 energy pile ground source pump spiral loops lateral deformation side friction of piles contact interface
  • 相关文献

参考文献3

二级参考文献19

  • 1张强林,王媛.岩体THM耦合应用研究现状综述[J].河海大学学报(自然科学版),2007,35(5):538-541. 被引量:2
  • 2Brandl H.Energy foundations and other thermo-active ground structures[J].Géotechnique,2006,56(2):81-122.
  • 3Gao J,Zhang X,Liu J,et al.Numerical and experimental assessment of thermal performance of vertical energy piles:An application[J].Applied Energy,2008,85(10):901-910.
  • 4National House-Building Council(NHBC).Efficient Design of Piled Foundations for Low Rise Housing:Design Guide[M].Watford,UK:IHS BRE Press,2010.
  • 5Ground Source Heat Pump Association(GSHPA).Thermal Pile Design,Installation&Materials Standards[M].Milton Keynes,UK:National Energy Centre,2013.
  • 6American Society of Heating,Refrigerating and Air-Conditioning Engineers(ASHRAE).2011 ASHRAE Handbook:Heating,Ventilating,and Air-Conditioning Applications[M].Atlanta,USA:American Society of Heating,Refrigerating and Air-Conditioning Engineers,2011.
  • 7Loveridge F,Powrie,W.Temperature response functions(G-functions)for single pile heat exchangers[J].Energy,2013,57,554-564.
  • 8Man Y,Yang H,Diao N,et al.A new model and analytical solutions for borehole and pile ground heat exchangers[J].International Journal of Heat and Mass Transfer,2010,53(13):2593-2601.
  • 9Carslaw H S,Jaeger J C.Conduction of Heat in Solids[M].Oxford,UK:Clarendon Press,1947.
  • 10Eskilson P.Thermal Analysis of Heat Extraction Boreholes[D].Lund,Sweden:Lund University,1987.

共引文献127

同被引文献43

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部