摘要
语音端点检测是语音处理和识别至关重要的一环.针对传统端点检测方法在低信噪比情况下语音端点检测正确率低,抗噪能力差等问题,本文提出了一种改进的新能零熵特征参数语音端点检测方法.该方法法通过对语音三个端点检测特征参数短时过零率,短时能量和基本谱熵分析研究并提出新的语音参数,即为短时能零熵值,最后采用双门限算法来进行端点检测.仿真实验表明,与传统的能零比端点检测法相比,该方法在不同低信噪比情况下有较高的端点检测准确性.
Speech endpoint detection is an important part of speech processing and recognition.Traditional endpoint detection methods have low accuracy in speech endpoint detection and poor anti-noise ability under the condition of low signal-to-noise ratio,In this paper,an improved zero-entropy feature parameter speech endpoint detection algorithm is proposed.This method studies the short-time zero-crossing rate,short-time energy and basic spectral entropy of three speech endpoint detection feature parameters,and proposes a new speech parameter,namely,the short-time energy zero-entropy value.Finally,a two-threshold algorithm is adopted to carry out endpoint detection.Simulation results show that compared with the traditional zero-energy ratio endpoint detection method,this method has higher endpoint detection accuracy under different low SNR conditions.
作者
黄镇坤
章小兵
朱俞清
HUANG Zhen-kun;ZHANG Xiao-bing;ZHU Yu-qing(Anhui University of Technology,Ma Anshan 24300,China)
出处
《微电子学与计算机》
北大核心
2020年第6期19-23,29,共6页
Microelectronics & Computer
基金
安徽工业大学产学研基金资助重大项目(RD14206003)。
关键词
端点检测
双门限算法
短时能零熵
低信噪比
endpoint detection
energy-zero rate ratio
short-term energy-zero entropy
Low signal-to-noise ratio