期刊文献+

考虑背栅偏置的FOI FinFET电流模型

Current Model of FOI FinFETs with Back-Gate Bias
下载PDF
导出
摘要 建立了绝缘体上鳍(FOI)鳍式场效应晶体管(FinFET)的电流模型,通过推导出背栅对前栅的耦合系数,使电流模型可以预测背栅电压对沟道电流的影响。该模型可以较为精准地预测实验数据和TCAD仿真结果,并且对于FOI FinFET的鳍宽和侧壁倾斜角等几何参数有较宽的适用范围。通过提取耦合系数,证明了背栅对前栅的耦合效应将随着鳍宽和侧壁倾角的增大而增强,而鳍底部的夹角对沟道的影响可以忽略。所提出的模型可以用于建立BSIM模型,指导设计者优化器件性能,以及进行背栅偏置的低功耗集成电路设计。 A current model of fin-on-insulator(FOI)fin field effect transistors(FinFETs)was established,which could predict the channel current under different back-gate biases by theoretical deriving the coupling coefficient between back-and front-gates.The proposed model can accurately predict both the experimental and TCAD simulation results,which has a wide application range for various geometry parameters,such as the fin width and sidewall inclination angle of FOI FinFETs,etc.By extracting the coupling coefficient,it is proved that the coupling effect between back-and front-gates is enhanced with the increase of the fin width and sidewall inclination angle,and the influence of fin bottom angle can be ignored.The proposed model can be used to build BSIM models,guide designers to optimize device performances,and employ the back-gate bias in low-power integrated circuits design.
作者 张峰源 刘凡宇 李博 李彬鸿 张旭 罗家俊 韩郑生 张青竹 Zhang Fengyuan;Liu Fanyu;Li Bo;Li Binhong;Zhang Xu;Luo Jiajun;Han Zhengsheng;Zhang Qingzhu(Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences,Beijing 100029,China)
出处 《半导体技术》 CAS 北大核心 2020年第6期438-443,共6页 Semiconductor Technology
基金 国家自然科学基金资助项目(61874135,11905287)。
关键词 绝缘体上鳍(FOI) 鳍式场效应晶体管(FinFET) 电流模型 背栅偏置 耦合效应 耦合系数 fin-on-insulator(FOI) fin field effect transistor(FinFET) current model back-gate bias coupling effect coupling coefficient
  • 相关文献

参考文献1

二级参考文献23

  • 1Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Anne-Marie K, Brendan M and Richard M 2010 Nature Nanotechnology 5 225.
  • 2Doria R T, Pavanello M A, Trevisoli R D, de Souza M, Lee C W, Ferain I, Akhavan N D, Ran Y, Razavi P, Ran Y, Kranti A and Colinge J P 2011 IEEE Trans. Electron Dev. 58 2511.
  • 3Kranti A, Lee C W, Ferain I, Yan R, Aldaavan N, Razavi E Yu R, Armstrong, G A and Colinge J P 2010 Electron Lett. 46 1491.
  • 4Baek D J, Duarte J E Moon D I, Kim C H, Ahn J H and Choi Y K 2012 Appl. Phys. Lett. 100 213703.
  • 5Lira H K and Fossum J G 1983 IEEE Trans. Electron Dev. 30 1244.
  • 6Fernandez C, Rodriguez N, Ohata A, Gamiz, E Andrieu F, Fenouillet- Beranger C, Faynot O and Cristoloveanu S 2013 IEEE Electron Dev. Lett. 34 840.
  • 7Parihar M S, Liu F Y, Navarro C, Barraud S, Bawedin M, Ionica I, Kranti A and Cristoloveanu S 2015 Proceedings of 45th Europe Solid-State Device Conference, Wien, Austria, p. 61.
  • 8Park S J, Jeon D Y, Mont'es L, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 87 74.
  • 9Chang S J, Bawedin M, Guo Y F, Liu F Y, Akarvardar K, Lee J H, Ionica I and Cristoloveanu S 2014 Solid-State Electron. 97 88.
  • 10Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I and Colinge J P 2009 Appl. Phys. Lett. 94 053511.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部