期刊文献+

采用干扰差分补偿的无切换吸引离散时间控制方法 被引量:1

Non-switching-attracting discrete-time control method by using disturbance difference compensation
原文传递
导出
摘要 提出一种基于无切换吸引律的离散控制器设计方法,将干扰差分补偿措施嵌入吸引律中构建理想误差动态,依据理想误差动态推导离散时间控制器.所提控制方案既回避了抖振,也能够有效抑制干扰.给出稳态误差带、绝对吸引层、单调减区间和跟踪误差首次进入稳态误差带的最多步数的具体表达式,用以刻画系统跟踪误差瞬态、稳态性能,并指导控制器参数整定.数值仿真与实验结果验证了所提出方法的有效性. A non-switching attracting law based discrete-time control method is proposed, where the disturbance difference compensation term is embedded in order to construct the ideal error dynamics. Based on the ideal error dynamics, a discrete-time controller can be derived, by which the chattering phenomenon can be avoided. Expressions of four performance indexes, including the steady-state error band, the absolute attracting layer, the monotonically decreasing region, and the maximum number of steps of that the tracking error converges into the steady-state error band for the first time, are derived to characterize both the transient and steady-state performance of the tracking error. Numerical simulation and experiment results verify the effectiveness of the proposed control scheme.
作者 孙明轩 胡志云 李威 李鹤 SUN Ming-xuan;HU Zhi-yun;LI Wei;LI He(College of Information Engineering.Zhejiang University of Technology,Hangzhou 310023,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第6期1512-1518,共7页 Control and Decision
基金 国家自然科学基金项目(61573320,61403343).
关键词 抖振 无切换吸引律 参数整定 干扰差分 理想误差动态 离散时间系统 chattering non-switching attracting laws parameter tuning disturbance differences ideal error dynamics discrete-time systems
  • 相关文献

参考文献4

二级参考文献34

  • 1高为炳.离散时间系统的变结构控制[J].自动化学报,1995,21(2):154-161. 被引量:134
  • 2Gao W B, Wang Y, Homaifa A. Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics, 1995, 42(2): 117-122.
  • 3Batoszewicz A. Remarks on "discrete-time variable structure control systems". IEEE Transactions on Industrial Electronics, 1996, 43(1): 235-238.
  • 4Batoszewicz A. Discrete-time quasi-sliding-mode control strategies. IEEE Transactions on Industrial Electronics, 1998, 45(4): 633-637.
  • 5Eun Y, Kim J, Kim K, Cho D. Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism. IEEE Transactions on Control Systems Technology, 1997, 7(4): 414-423.
  • 6Misawa E A. Discrete-time sliding mode control for nonlinear systems with unmatched uncertainties and uncertain control vector. Journal of Dynamic Systems, Measurement, and Control, 1997, 119(3): 503-512.
  • 7Tang C Y, Misawa E A. Discrete variable structure control for linear multivariable systems. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(4): 783-792.
  • 8Milosavljevic C, Veselic B, Mitic D. Discrete-time quasi-sliding mode control systems-part I. Electronics, 2005, 9(2): 16-25.
  • 9Kaynak O, Bartoszewicz A, Utkin V I. Special section on sliding mode control in industrial applications-Part II. IEEE Transactions on Industrial Electronics, 2009, 56(9).
  • 10Pisano A, Usai E. Sliding mode control: a survey with applications in math. Mathematics and Computers in Simulation, 2011, 81(5): 954-979.

共引文献116

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部