期刊文献+

基于LTP和局部PCA的低分辨率人脸识别算法 被引量:4

Low-resolution face recognition based on local ternary pattern and local principal component analysis
下载PDF
导出
摘要 针对单特征提取人脸识别算法识别率较低的问题,提出一种基于多特征融合的低分辨率人脸识别算法.首先,利用局部三值模式(local ternary pattern,LTP)和局部主成分分析(principal component analysis,PCA)提取低分辨率人脸特征,将其分割成若干块并统计各子块的特征直方图;其次,融合各子块的局部主成分分析和局部三值模式的直方图并级联各个分块,作为新的人脸特征;最后,通过卡方距离度量训练集和测试集直方图的相似度,采用最近邻算法识别相似度.实验结果表明,所提算法对环境和光照变化更具鲁棒性,识别率得到有效提升. On account of the problem of low recognition rate caused by single feature extraction algorithm,this paper comes up with a novel method which is based on multi-feature fusion.Firstly,the features of low-resolution face image are extracted by LTP(local ternary pattern)operator and local PCA(principal component analysis)operator,then two facial features are divided into several blocks and histograms of each block are calculated;secondly,the histograms of each block on LTP and local PCA are linearly concatenated as well as each block is cascaded as a final facial feature;lastly,Chi-square distance is used to measure the histogram similarities between training sets and testing sets.The nearest neighbor algorithm is adopted for recognition.The experimental results show that the proposed method is more robust to changes of illumination and noise,moreover it further improves the accuracy of face recognition.
作者 卞加祁 姚志均 胡学龙 陈舒涵 BIAN Jiaqi;YAO Zhijun;HU Xuelong;CHEN Shuhan(School of Information Engineering,Yangzhou University,Yangzhou 225127,China;School of Artificial Intelligence,Yangzhou University,Yangzhou 225127,China)
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2020年第2期47-51,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(61802336) 江苏省“六大人才高峰”资助项目(2010-DZXX-149)。
关键词 低分辨率 人脸识别 局部三值模式 局部主成分分析 多特征融合 low-resolution face recognition local ternary pattern local principal component analysis multi-feature fusion
  • 相关文献

参考文献1

二级参考文献19

  • 1WANG Zhi-fei,MIAO Zhen-jiang,Wu Jonathan Q M,et al. Low-resolution face recognition:A review[J]. The Visual Computer, 2014,30(4) : 359-386.
  • 2YANG Jian-chao,Wright J, Huang T S,et at. Image super- resolution via sparse representation[J]. IEEE Transaction on Image Processing,2010,19(11);2861-2873.
  • 3Zou W W W,Yuen P C. Very low resolution face recogni- tion problem[J]. IEEE Transactions on Image Processing, 2012,21(1) ,327-340.
  • 4MOhamed A A, Yampolskiy R V. Wavelet-based multisca- le adaptive LBP with directional statistical features for recognizing artificial faces[J]. International Scholarly Re- search Network (ISRN) Machine Vision,2012, (2012) ; 1- 8.
  • 5Ojala T, Pietikainen M, Maenpaa T. Multiresolution Gray- Scale and Rotation Invariant Texture Classification with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 6Meena K,Suruliandi A. Local binary patterns and its vari- ants for face recognition[A]. Proc. of International Confer- ence on Recent Trends in Information Technology (ICRTIT) [-C]. 2011,782-786.
  • 7LI Jing-jing,ZHAO Yong,QUAN Dong-bing. The combina- tion of CSLBP and LBP feature for pedestrian detection[A]. Proc. of 3rd International Conference on Computer Science and Network Technology (ICCSNT)[C]. 2013, 543-546.
  • 8Mehamed A A,Souza D,Baili N,et al. Avatar face recog- nition using wavelet transform and hierarchical multi-scale LBP[A]. Prec. of 10th international Conference on Ma- chine Learning and Applications and Workshops (ICMLA) [c]. 2011,1 : 194-199.
  • 9Jae Young Choi, Plataniotis K N, Yong Man Ro. Using Color Local Binary Pattern Features for Face Recognition [A]. Proc. of 17th IEEE International Conference on Im- age Processing (ICIP) [C]. 2010,4541-4544.
  • 10Nedevschi S, Peter I R, Mandrut A. PCA type algorithm applied in face recognition[J]. IEEE International Confer- ence on Intelligent Computer Communication and Pro- cessing(ICCP). Cluj-Napoca IEEE Press, 2012,167-171.

共引文献11

同被引文献41

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部