摘要
【目的】设计基于改进的Vicsek模型的同步聚类算法,研究社会网络的同步演化过程与簇结构。【方法】针对原始Vicsek模型的个体运动速率恒定问题,引入速率自我调节规则调整个体演化速率;针对原始Vicsek模型的个体重要性相同问题,引入个体重要性控制个体演化方向。【结果】利用金融网络数据集验证本文算法,F1-Score高于Sync算法和基于Vicsek模型的聚类算法。【局限】算法时间复杂度与数据集规模成正相关关系,使得算法时间复杂度较高。【结论】基于改进的Vicsek模型的同步聚类算法能较好地刻画复杂社会网络的演化与同步过程,准确发现社会网络中的簇结构。
[Objective] The paper designs an algorithm based on the improved Vicsek model, aiming to study the synchronous evolution process and cluster structure of social networks. [Methods] First, we introduced a rate selfregulation rule to adjust the individual evolution rate of the original Vicsek model. Then, we used individual importance to control the direction of individual evolution of the Vicsek model. [Results] We examined our new algorithm with datasets of financial networks. The F1-Score for clustering results was higher than the Sync algorithm and clustering algorithm based on the original Vicsek model. [Limitations] The clustering time was very complex with large datasets. [Conclusions] The proposed algorithm could effectively describe the evolution and synchronization of complex social networks, and then accurately discover their cluster structures.
作者
杨旭
钱晓东
Yang Xu;Qian Xiaodong(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;School of Economics and Management,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2020年第4期119-128,共10页
Data Analysis and Knowledge Discovery
基金
国家自然科学基金项目“基于复杂网络的商务大数据聚类与关联应用研究”(项目编号:71461017)的研究成果之一。