摘要
为解决数据分布式存储下实现较高精度和安全性的个性化推荐,提出了一种全新的分布式半监督推荐系统框架。尝试将半监督学习方法中的协同训练(Co-training)与基于深度学习的深度协同过滤模型结合为Co-NCF模型,并使用基于consensus算法的分布式梯度下降法来训练Co-NCF模型,以此构建了Co-NCF模型的分布式版本。该模型在MovieLens数据集上的测试中,表现显著强于现有的分布式NCF模型。
In order to realize the personalized recommendation with high accuracy and security,a new framework of distributed semi-supervised recommendation system was proposed.Co-NCF model was established through the combination of the co-training of semi supervised learning method with deep collaborative filtering model based on deep learning.Consensus-based distributed gradient decent algorithm was employed to train the Co-NCF model,so as to build the distributed version of Co-NCF model.In the test of MovieLens dataset,the performance of this model was significantly better than that of the existing distributed NCF model.
作者
高浩元
许建强
GAO Haoyuan;XU Jianqiang(College of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China;School of Sciences,Shanghai Institute of Technology,Shanghai 201418,China)
出处
《应用技术学报》
2020年第2期189-195,共7页
Journal of Technology
基金
国家自然科学基金(11401385)
上海应用技术大学毕设重点项目(1011LW190039)资助。
关键词
推荐系统
神经网络
分布式计算
协同训练
半监督学习
协同过滤
recommendation system
neural networks
distributed computing
Co-training
semi-supervised learning
collaborative filtering