期刊文献+

基于协同训练的分布式深度协同过滤模型 被引量:1

Research on Distributed Deep Collaborative Filtering Model Based on Co-Training
下载PDF
导出
摘要 为解决数据分布式存储下实现较高精度和安全性的个性化推荐,提出了一种全新的分布式半监督推荐系统框架。尝试将半监督学习方法中的协同训练(Co-training)与基于深度学习的深度协同过滤模型结合为Co-NCF模型,并使用基于consensus算法的分布式梯度下降法来训练Co-NCF模型,以此构建了Co-NCF模型的分布式版本。该模型在MovieLens数据集上的测试中,表现显著强于现有的分布式NCF模型。 In order to realize the personalized recommendation with high accuracy and security,a new framework of distributed semi-supervised recommendation system was proposed.Co-NCF model was established through the combination of the co-training of semi supervised learning method with deep collaborative filtering model based on deep learning.Consensus-based distributed gradient decent algorithm was employed to train the Co-NCF model,so as to build the distributed version of Co-NCF model.In the test of MovieLens dataset,the performance of this model was significantly better than that of the existing distributed NCF model.
作者 高浩元 许建强 GAO Haoyuan;XU Jianqiang(College of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China;School of Sciences,Shanghai Institute of Technology,Shanghai 201418,China)
出处 《应用技术学报》 2020年第2期189-195,共7页 Journal of Technology
基金 国家自然科学基金(11401385) 上海应用技术大学毕设重点项目(1011LW190039)资助。
关键词 推荐系统 神经网络 分布式计算 协同训练 半监督学习 协同过滤 recommendation system neural networks distributed computing Co-training semi-supervised learning collaborative filtering
  • 相关文献

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部