摘要
利用一个推广的Ovsyannikov定理,讨论了两分量Novikov系统Cauchy问题解在Sobolev-Gevrey空间G 1 r,s(R)×G 1 r,s-1(R)中的正则性与解析性,其中s>3/2,r≥1,并研究了该问题解映射z0→z(t)的连续性。此结论可以直接应用到Novikov方程。
Considered herein is the initial value problem for the two-component Novikov system.At first,the Gevrey regularity and analyticity of the solutions to this problem in Sobolev-Gevrey spaces G 1 r,s(R)×G 1 r,s-1(R)with s>3/2,r≥1 are investigated by making use of the generalized Ovsyannikov theorem.Next,the continuity of the solution map z0→z(t)is discussed.The results can be directly applied to Novikov equation.
作者
王海权
种鸽子
WANG Hai-quan;CHONG Ge-zi(School of Mathematics,Northwest University,Xi̓an 710127,Shaanxi,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2020年第6期56-63,75,共9页
Journal of Shandong University(Natural Science)
基金
陕西省自然科学基金资助项目(2019JM007)。