摘要
研究了非线性四阶常微分方程边值问题{u^(4)(t)=f(t,u(t),u′(t),u″(t)),a.e.t∈(0,1),u(0)=u″(0)=u(1)=u″(1)=0,{其中非线性项f:[0,1]×R 3→R为Carathéodory函数。运用Leray-Schauder原理,在f满足适当的至多线性增长性条件时,获得了该问题解的存在性。进一步,在f满足Lipschitz条件时,得到了该问题解的存在唯一性。
This article considers the existence and uniqueness of solutions of boundary value problems of nonlinear fourth-order ordi-nary differential equations {u^(4)(t)=f(t,u(t),u′(t),u″(t)),a.e.t∈(0,1),u(0)=u″(0)=u(1)=u″(1)=0,{where nonlinearity f:[0,1]×R 3→R is a Carathéodory function.The existence of solutions is obtained when f satisfies the condition of proper utmost linear growth by using the Leray-Schauder principle.Furthermore,the uniqueness of solutions is proved when f sat-isfies the Lipschitz condition.
作者
杨丽娟
YANG Li-juan(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2020年第6期101-108,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11671322)。