期刊文献+

基于纳米锥结构的钙钛矿材料吸收特性研究 被引量:4

Study on absorption characteristics of perovskite materials based on nano-cone structure
原文传递
导出
摘要 本文对ZnO结构太阳能电池钙钛矿(CaTiO3)薄膜层中嵌入的Ag粒子的等离子体增强进行了理论分析。由于引入了Ag颗粒,归因于Ag颗粒的强表面等离子体吸收和Ag与CaTiO3之间的协同作用,太阳能电池的吸收得以增强。在计算分析中,Ag粒子的最佳半径为80 nm。优化的纳米结构的平均吸收效率可以达到80%,比纯CaTiO3薄膜层结构的平均吸收效率高24%。因此认为,本文设计研究的Ag/CaTiO3太阳能电池结构可能以低成本和简单的制造工艺成为未来工业制造领域的焦点。 In this work,a theoretical analysis of plasmonic enhancement of Ag particles embedded in CaTiO3 thin-film layer for ZnO structure solar cells is presented.Due to the introduction of Ag particles,the absorption of solar cell is enhanced,owning to the strong surface plasmon absorption of Ag particles and synergistic effect between Ag and CaTiO3.In our analysis,the optimized radius of Ag particles is 80 nm.The average absorption efficiency of the optimized nano-structure can achieve 80%,which is 24% higher than that of pure CaTiO3 thin-film layer structure.We believe the proposed Ag/CaTiO3 solar cells structure could be a potential candidate for futureindustry manufacture with low-cost and simple fabricationprocess.
作者 冯小路 张旭 姬进才 孙晓红 FENG Xiao-lu;ZHANG Xu;JI Jin-cai;SUN Xiao-hong(School of Information Engineering,Zhengzhou University,Zhengzhou,Henan 450052,China;School of Information and Information Engineering,Zhengzhou University,Zhengzhou.Henan 450000,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2020年第3期293-298,共6页 Journal of Optoelectronics·Laser
基金 优秀青年基金(1521318002)资助项目。
关键词 纳米锥 等离激元 CaTiO3材料 太阳能电池 平面薄膜结构 nanocone plasmonic CaTiO3 material solarcell thin-film layer structure
  • 相关文献

参考文献1

二级参考文献28

  • 1Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; ,berg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B., et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit.Science 2013, 339, 1057-1060.
  • 2Mariani, G.; Wong, P.-S.; Katzenmeyer, A. M.; L6onard, F.; Shapiro, J.; Huffaker, D. L. Patterned radial GaAs nanopillar solar cells. Nano Lett. 2011, 11, 2490-2494.
  • 3Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S., Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2009, 2, 035004.
  • 4Cui, Y. C.; Wang, J.; Plissard, S. R.; Cavalli, A.; Vu, T. T. T.; van Veldhoven, R. P. J.; Gao, L.; Trainor, M.; Verheijen, M. A.; Haverkort, J. E. M., et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning. Nano Lett. 2013, 13, 4113-4117.
  • 5Vj, L.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S.-Y.; Talin, A. A.; Dhar, N. K., et al. A perspective on nanowire photo- detectors: Current status, future challenges, and opportunities. IEEE J. SeL Top. Quant. Electron. 2011, 17, 1002- 1032.
  • 6Svensson, J.; Anttu, N.; Vainorius, N.; Borg, B. M.; Wernersson, L.-E. Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors. Nano Lett. 2013, 13, 1380-1385.
  • 7Kismer, G.; G6sele, U. Stress and dislocations at cross- sectional heterojunctions in a cylindrical nanowire. Philos. Mag. 2004, 84, 3803 -3824.
  • 8Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
  • 9Bj6rk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87-89.
  • 10Wu, Y. Y.; Fan, R.; Yang, P. D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2002, 2, 83- 86.

共引文献1

同被引文献9

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部