期刊文献+

基于卡尔曼滤波修正的多步风电功率预测 被引量:11

Multi-Step Wind Power Forecasting based on Kalman Filter Modification
原文传递
导出
摘要 针对传统时间序列预测多步风速时不能预测突变风速使风电功率预测误差较大的问题,采用基于数值天气预报(numerical weather prediction,NWP)风速及历史风速修正的卡尔曼滤波法对NWP风速进行多步修正,并通过修正后的NWP风速进行多步功率预测,第16步风速平均绝对误差降低了0.47 m/s,将该修正NWP风速与支持向量回归相结合,构建风电功率预测模型。构建模型与ARIMA模型及NWP直接预测模型相比,误差分别降低了6.8%和8.4%。应用该模型对山东某地区风电场现场数据进行仿真测试,第16步预测准确率达到82.6%。 Due to traditional time series prediction of multi-step wind speed cannot predict abrupt wind speed,which leads large prediction error of wind power.The Kalman filter method based on numerical weather prediction(NWP) wind speed and historical wind speed correction is used to modify the NWP wind speed,which then is used in the multi-step prediction.The average absolute error of wind speed is reduced by 0.47 m/s.Then the revised NWP wind speed and support vector regression are combined to construct the wind power prediction model.Compared with ARIMA model and NWP direct prediction,the error is reduced by 6.8% and 8.4% respectively.The model is applied to simulate the field data of a wind farm in Shandong Province,and the accuracy of 16 th-step prediction reaches 82.6%.
作者 郑培 于立军 侯胜亚 王春平 ZHENG Pei;YU Li-jun;HOU Sheng-ya;WANG Chun-ping(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai,China,200240)
出处 《热能动力工程》 CAS CSCD 北大核心 2020年第4期235-241,共7页 Journal of Engineering for Thermal Energy and Power
基金 上海市科学技术委员会项目(19DZ1206202)。
关键词 多步风电功率预测 卡尔曼滤波 支持向量回归 时间序列分析 multi-step wind power prediction Kalman filter support vector regression time series analysis
  • 相关文献

参考文献12

二级参考文献171

共引文献920

同被引文献121

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部