期刊文献+

切割方向对桦木衍生的取向微通道生物质炭锂硫电池隔膜性能的影响 被引量:3

Sawing Angles on Property of Lithium-sulfur Battery Interlayer Prepared with Birch Derived Orientedly Microchannel Biochar
下载PDF
导出
摘要 生物源材料由于来源丰富、可循环使用、无污染,并且能够实现多功能化而引起了广泛关注。本研究利用大自然中广泛分布的桦木树干为原料,通过不同取向切割、去木质素和碳化等过程得到具有相应取向的微孔道结构的生物质炭,并用作锂硫电池的隔层。生物质炭的比表面积为267.7 m^2/g,有大量的微孔及介孔。测试结果表明:沿与电极平面呈45°方向切割所得的生物质炭的电化学性能最好。在0.2C(1C=1650 mA/g)下该生物质炭隔层制备的锂硫电池初始比容量为979.4 mAh/g,200次循环后保留有625.4 mAh/g,每圈容量损失率仅为0.18%。该生物质炭隔层可以有效地吸附和阻挡多硫化锂,减小充放电过程中产生的穿梭效应,并且桦木的微通道结构和类蒸腾特性可以有效地提高电池的比容量、循环稳定性,有利于锂硫电池的商业化应用。 Bio-source materials have attracted wide attention due to their rich sources,recyclability,pollution-free and multi-functional properties.Herein,a lithium-sulfur battery interlayer was obtained by slicing the birch at different angles,following with the delignification and carbonization processes.Biochar containing lots of micropores and mesopores shows a specific surface area up to 267.7 m^2/g.The biochar interlayer sawing along 45°achieved the highest electrochemical performances.Based on this biochar interlayer,lithium-sulfur battery exhibits a high initial capacity of 979.4 mAh/g at 0.2C(1C=1650 mA/g)and retains a discharge specific capacity of 625.4 mAh/g after 200 cycles,which degrades only 0.18% per cycle.Furthermore,the hierarchical microchannel and transpiration of birch effectively adsorb polysulfide and reduce the shuttle effect,suggesting that it can be widely employed in commercial lithium sulfur battery.
作者 蒋浩 吴淏 侯成义 李耀刚 肖茹 张青红 王宏志 JIANG Hao;WU Hao;HOU Chengyi;LI Yaogang;XIAO Ru;ZHANG Qinghong;WANG Hongzhi(State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China)
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第6期717-723,共7页 Journal of Inorganic Materials
基金 中央高校基本科研业务费专项资金(2232019A3-02) 国家自然科学基金(51672043) 东华大学励志计划(LZB2019002)。
关键词 锂硫电池 仿生 桦木 隔层 lithium-sulfur battery bionics birch interlayer
  • 相关文献

参考文献2

二级参考文献24

  • 1GWON H, HONG J, KIM H, et al. Recent progress on flexiblelithium rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 538-55l.
  • 2RUI XU, LU JUN, AMINEK. Progress in mechanistic under- standing and characterization techniques of Li-S batteries. Ad- vanced Energy Materials, 2015, doi:10.1002/aenm.201500408.
  • 3YIN YA-XIA, XIN SEN, GUO YU-GUO, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem. Int. Ed. Engl., 2013, 52(50): 13186-13200.
  • 4MANTHIRAM A, FU YONG-ZHU, CHU-NG SHENG-HENG~ et al. Rechargeable lithium-sulfur batteries. Chemical Review, 2014, 114(23): 11751-11787.
  • 5ZHANG B, Q1N X, LI GR, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010, 3(10): 1531-1537.
  • 6ZHENG GUANG-YUAN, YANG YUAN, CUI YI, et aL Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Letters, 2011, 11(10): 4462-4467.
  • 7ZHANG SONG-TAO, ZHENG MING-BO, LIN ZI-XIA, et al. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium-sulfur batteries. J. Mater. Chem. A, 2014, 2(38): 15889-15896.
  • 8ZHAO SHENG-RONG, LI CHENG-MING, WANG WEI-KUN, et al. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries. J. Mater. Chem. A, 2013, 1(10): 3334-3339.
  • 9YE HUAN, YIN YA-XIA, GUO YU-GUO, et al.Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries, d. Mater. Chem. A, 2013, 1(22): 6602-6608.
  • 10WU YI-HAN, XU CHUN-MEI, GUO JIN-XIN, et al. Enhanced electrochemical performance by wrapping graphene on carbon nanotube/sulfur composites for rechargeable lithium-sulfur batter- ies. Materials Letters, 2014, 137: 277-280.

共引文献4

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部