期刊文献+

多飞行器的有限时间姿态一致性编队控制 被引量:7

Finite Time Attitude Consensus Formation Control for Multiple Spacecrafts
下载PDF
导出
摘要 通过有限时间命令滤波器和自适应控制研究了多飞行器编队的有限时间姿态一致性跟踪问题,并考虑如何解决系统惯性不确定性和干扰的影响。有限时间命令滤波器的使用避免了对虚拟控制信号进行求导运算。建立的误差补偿机制可以补偿由于应用滤波器造成的滤波误差,保证更高的控制精度。利用神经网络结合自适应技术以估计由未知惯性矩阵形成的不确定非线性动态。最后,利用李雅普诺夫函数证明了基于反步设计的控制器可以保证多飞行器的姿态一致性,跟踪误差能在有限时间内收敛到任意期望的邻域内,并通过仿真证明了该控制策略的有效性。 In this paper,the finite time attitude consensus tracking problem of multi-spacecraft formation is studied by using finite time command filter and adaptive control technology,and how to solve the influence of system inertia uncertainty and interference is considered.The use of finite time command filter avoids the derivation of virtual control signals.The established error compensation mechanism can compensate the filter error caused by the application filter and ensure higher control accuracy.Neural networks combined with adaptive techniques are used to estimate uncertain nonlinear dynamics formed by unknown inertial matrices.Finally,it is proved by Lyapunov function that the controller based on backstepping design can ensure the attitude consistency of multiple vehicles,and the tracking error can converge to any desired neighborhood in a finite time,and the effectiveness of the control strategy is proved by simulation.
作者 刘国庆 赵林 LIU Guoqing;ZHAO Lin(School of Automation,Qingdao University,Qingdao 266071,China)
出处 《无人系统技术》 2020年第2期22-29,共8页 Unmanned Systems Technology
基金 国家自然科学基金(61603204) 山东省优秀青年基金(ZR2018JL020) 山东省高等学校青年创新团队项目(2019KJN033)。
关键词 飞行器编队 姿态一致性跟踪 有限时间控制 反步控制 神经网络 Formation of Spacecraft Attitude Consensus Tracking Finite Time Control Backstepping Control Neural Networks
  • 相关文献

参考文献2

二级参考文献154

  • 1程代展,陈翰馥.从群集到社会行为控制[J].科技导报,2004,22(8):4-7. 被引量:32
  • 2任德华,卢桂章.对队形控制的思考[J].控制与决策,2005,20(6):601-606. 被引量:51
  • 3原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794. 被引量:73
  • 4BRISTOW J, FOLTA D, HARTMAN K. Formation flying technology vision[C]//AIAA Space 2000 Conference and Exposition. California: AIAA Press, 2000, 4:2836 - 2841.
  • 5LINDENSMITH C. Terrestrial Planet Finder: technology development plans and progress[C]//Proceedings of the IEEE Aerospace Conference. Montana: IEEE Press, 2004, 6:4186 - 4189.
  • 6FRIDLUND C V M, CAPACCIONI E Infrared space interferometry - the DARWIN mission[J]. Advances in Space Research, 2002, 30(9): 2135 - 2145.
  • 7TILLERSON M, BREGER L, HOW J. Distributed coordination and control of formation flying spacecraft[C]//Proceedings of the American Control Conference. Colorado: IEEE Press, 2003, 2:1740 - 1745.
  • 8SMITH R S, HADAEGH F Y. Control topologies for deep space formarion flying spacecraft[C]//Proceedings of the American Control Conference. Alaska: IEEE Press, 2002, 4:2836 - 2841.
  • 9SULTAN C, SEEREERAM S, MEHRA R K. Energy optimal multispacecraft relative reconflguration of deep space formation flying[C] //Proceedings of the 43rd IEEE Conference on Decision and Control. Nassau: IEEE Press, 2004, 1 : 284 - 289.
  • 10BIKDASH M, HADAEGH F Y, SCHARF D, et al. Three- dimensional analysis of basic formation initialization algorithms in deep space[C]//Proceedings of the American Control Conference. Boston: IEEE Press, 2004, 4:3447 - 3453.

共引文献95

同被引文献32

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部