期刊文献+

一种基于变量稳定性与集群分析相结合的近红外波长的选择方法 被引量:2

A near infrared wavelength selection method based on the variable stability and population analysis
下载PDF
导出
摘要 为了提高分析模型的效率与性能,提出了一种基于变量稳定性与集群分析相结合(VSPA)的波长选择方法。该算法将变量分为样本空间与变量空间,在样本空间里计算变量的稳定性,根据稳定性值,利用加权自举采样技术将变量划分为有用变量与无用变量;在变量空间中,统计每个变量出现的频率,利用指数衰减函数在无用变量中去掉变量频率较低的变量。将算法应用在近红外光谱玉米数据集中来预测玉米中淀粉的含量,其预测集均方根(RMSEP)与相关系数(R_p)分别为0.0409和0.9974,筛选后的特征变量仅为原始光谱数据的2.7%,说明提出的变量选择方法能够提高模型的运算效率与预测能力,是一种有效的变量选择方法。 In order to improve the efficiency and performance of the analysis model,a wavelength selection method based on variable stability and population analysis(VSPA)is proposed.Firstly,the variables are divided into sample space and variable space,and the stability of variables is calculated in the sample space.According to the stability value,the variables are divided into useful variables and useless variables by weighted bootstrap sampling technology.Then,in the variable space,the frequency of each variable is calculated,and the exponential decline function is used to remove the variables with lower frequency from the useless variables.Finally,the proposed algorithm is applied to corn NIR data set to predict the starch content.The predicted root root-mean-square(RMSEP)and predicted correlation coefficient(RP)is 0.0409 and 0.9974,respectively.The variables after selection are only 2.7%of the original spectral data.It shows that the proposed variable selection method can improve the operational efficiency and prediction accuracy of the model,and is proved to be an effective variable selection method.
作者 张峰 汤晓君 仝昂鑫 王斌 王经纬 ZHANG Feng;TANG Xiao-Jun;TONG Ang-Xin;WANG Bin;WANG Jing-Wei(Xi’an Jiaotong University State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an 710049,China)
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2020年第3期318-323,共6页 Journal of Infrared and Millimeter Waves
基金 国家重点研发计划(2016YFF0102805)。
关键词 波长选择 加权自举采样 近红外光谱 偏最小二乘 wavelength selection weighted bootstrap sampling near infrared spectral partial least squares
  • 相关文献

参考文献3

二级参考文献29

  • 1何勇,李晓丽.用近红外光谱鉴别杨梅品种的研究[J].红外与毫米波学报,2006,25(3):192-194. 被引量:65
  • 2Tsai C Y, Chen H J, Hsieh J F, et al. Fabrication of a near infrared online inspection system for pear fruit[ J]. Interna- tional Agricultural Engineering Journal, 2007,16 : 57 - 70.
  • 3Walsh K B, Long R L, Middleton S G. Use of near infra- red spectroscopy in evaluation of source-sink manipulation to increase the soluble sugar content of stonefruit[ J]. Jour- nal of Food Engineering, 2007,78 ( 2 ) :701 - 707.
  • 4Camps C, Guillermin P, Mauget J C, et al. Discrimination of storage duration of apples stored in a cooled room and shelf-life by visible-near infrared spectroscopy [ J ]. Journal of near Infrared Spectroscopy, 2007,15 ( 3 ) : 169 - 177.
  • 5Lu R, Ariana D. A near-infrared sensing technique for measuring internal quality of apple fruit [ J]. Applied Engi- neering in Agriculture, 2002,18 ( 5 ) : 585 - 590.
  • 6ZOU Xiao-Bo, ZHAO Jie-Wen, Li Yan-Xiao. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of ' Fuji' apple based on BiPLS and FiPLS models [ J ]. Vibration Spectroscopy. 2007,44 : 220 - 227.
  • 7Guyer D, Yang X K. Use of genetic artificial neural net- works and spectral imaging for defect detection on cherries [ J ]. Computers and Electronics in Agriculture, 2000,29 (3) :179 - 194.
  • 8Kirkpatrick S, Gelatt C D Jr, Vecchi M P. Optimization by simulated annealing[ J]. Science. 1983,220:671 - 680.
  • 9Zimmermann B, Kohler A. Appl. Spectrosc. , 2013, 67: 892.
  • 10Serafinczuk J, Pietrucha J, Schroeder G, et al. Opt. Appl. , 2011, 41: 315.

共引文献85

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部