摘要
采用支持向量机算法建立了精轧部分带钢跑偏调平的预测模型.在精轧部分针对粗轧来料头部的跑偏进行控制,预测结果与筛选得到的优秀调平样本趋势基本一致.同时为了评估和分析SVM模型的性能,采用均方误差MSE以及相关系数r作为预测模型性能的评价指标.结果表明,基于支持向量机的预测模型具有较好的效果.
A support vector machine algorithm is used to establish a predictive model for the deviation of the strip during finishing rolling.In the finish rolling part,the deviation of the head of the rough rolling incoming material is controlled,and the prediction results are basically consistent with the trend of the excellent leveling samples obtained by the screening.At the same time,in order to evaluate and analyze the performance of the SVM model,the mean square error MSE and the correlation coefficient r are used as evaluation indexes to predict the performance of the model.The results show that the prediction model based on support vector machine has good effect.
作者
崔宇轩
CUI Yuxuan(The Fourth Steel Rolling Plant of Maanshan Iron and Steel Co.,Ltd.,Maanshan 243000,China)
出处
《山东冶金》
CAS
2020年第3期32-35,40,共5页
Shandong Metallurgy
关键词
带钢
跑偏
调平
预测模型
岭回归算法
支持向量机算法
strip steel
deviation
leveling
prediction model
ridge regression algorithm
support vector machine algorithm