期刊文献+

基于ReliefF与互信息结合的特征评价、筛选的家庭负荷类型辨识方法研究 被引量:1

Research on household load type identification method considering feature evaluation and screening based on ReliefF and mutual information
下载PDF
导出
摘要 家庭负荷识别是实现需求侧精细化管理的关键。针对现有家庭负荷辨识研究中对所提取特征贡献度及相关性分析不足的问题,提出了基于ReliefF与互信息结合的特征评价、筛选的家庭负荷类型辨识方法。文中在现有研究基础上提取了16个家庭负荷运行暂、稳态特征,对其权重及特征间相关性进行分析,筛选了其中辨识效果最优的特征组合,利用基于粒子群优化的支持向量机(Support Vector Machine based on Particle Swarm Optimization,PSO-SVM)分类模型对实测数据样本进行了辨识。算例结果验证了所提算法的准确性和优越性。 Household load identification is the key to achieve demand side refined management.Aiming at the problem of insufficient analysis of the extracted feature contribution and correlation in the existing household load identification research,this paper proposes a household load type identification method considering feature evaluation and screening based on the combination of ReliefF and mutual information.Based on the existing research,this paper firstly extracts the temporary and steady-state characteristics of 16 household load operations,and then,analyzes the weight and correlation between them,and selects the feature combination with the best identification effect.Finally,the support vector machine classification model based on particle swarm optimization(PSO-SVM)is adopted to identify the measured data sample.The example results verify the accuracy and superiority of the proposed algorithm.
作者 薛冰 温克欢 李伟华 张之涵 唐义锋 Xue Bing;Wen Kehuan;Li Weihua;Zhang Zhihan;Tang Yifeng(Shenzhen Power Supply Co.,Ltd.,Shenzhen 518048,Guangdong,China;Shenzhen Shenbao Electronic Meter Co.,Ltd.,Shenzhen 518133,Guangdong,China)
出处 《电测与仪表》 北大核心 2020年第12期38-45,共8页 Electrical Measurement & Instrumentation
基金 深圳供电局有限公司科技项目(090000KK52180118)。
关键词 家庭负荷 RELIEFF 互信息 PSO-SVM household load ReliefF mutual information PSO-SVM
  • 相关文献

参考文献14

二级参考文献158

  • 1章鹿华,王思彤,易忠林,袁瑞铭,周晖,殷庆铎.面向智能用电的家庭综合能源管理系统的设计与实现[J].电测与仪表,2010,47(9):35-38. 被引量:62
  • 2高玉琦,李友善,陈善本.用Hammstein模型描述的非线性系统的结构辨识[J].机器人,1994,16(1):50-55. 被引量:1
  • 3刘正平,陈明奎.基于二阶统计量的盲信号分离[J].传感器与微系统,2007,26(5):33-35. 被引量:4
  • 4Steven R. Shaw, StevenB. Leeb, Leslie K. Norford, and Rohert W. Cox, Nonintrusive L.oad Mcmitoring and Diagnostics in Power Systems [J]. IEEE Transactions on instrumentation and measurement, 2008, 57(7) : 1445-1454.
  • 5Christopher Langhman, Kwangduk Lee, R obert Cox. Sieven Shaw,Steven Leeb, l,es Norford, and Peter Armsllxmg. Power Signature A- nalysis[ J]. IEEE power & energy magazine, 2003: 56-63.
  • 6Suzuki K, Inagaki S, Suzuki T, et aI. Nonintrusive appliance load mo- nitoring based on integer programming [ C ].// SICE Annual Confer- ence, Tokyo, Japan, 2008: 2742-2747.
  • 7Simon K K. Ng, Jian Liang, John W. M. Cheng. Automatic Appli- ance Load Signature Identification by Statistical Clustering[ C ]//Sth IET International Conference on Advanced in Power System Control, Operation and Management, Hong Kong, 2009: 1-6.
  • 8George W. Hart. Nonintrusive Appliance Load Monitoring[J]. Pro- ceedings of the IEEE, 1992, 80(12) : 1870-1891.
  • 9A. G. Ruzzelli, C. Nicolas, A. Schoofs, et al. Real -Time Reeog- nilion and Profiling of Appliances through a Single Electricity Sensor [ C]. //7th Annual IEEE Communications Society Conference on Sen- sor Mesh and Ad Hoe Communications Networks, Boston, 2010:1-9.
  • 10中电联.2013年1-10月份电力工业运行简况[DB/OL].[2013-11-15].http://www.cec.org.cn/guihuayutongji/gongxufenxi/dianliyunxingjiankuang/2013-11-15/112210.html.

共引文献501

同被引文献12

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部