期刊文献+

齐次核的Hilbert型积分不等式的研究进展与现状 被引量:2

Research Progress and Present Situation of Hilbert-type Integral Inequality with Homogeneous Kernel
下载PDF
导出
摘要 对齐次核的Hilbert型积分不等式的研究方法和理论意义进行陈述,讨论研究进展与研究现状.按研究的深度,将研究进展分为3个阶段:以针对具体齐次核进行适当的参数搭配得到最佳不等式为特征的第一阶段;以针对抽象齐次核寻求不等式取最佳常数因子的等价参数条件为特征的第二阶段;针对抽象齐次核寻求不等式成立的充要条件的第三阶段.通过这3个阶段的划分,有助于了解Hilbert型不等式的研究现状. This paper makes a statement on the research method and theoretical meaning of Hilbert-type integral inequality with Homogeneous kernel,the research progress and current situation are discussed.According to the depth of the research,the research progress is divided into three stages.The first stage is characterized by getting the best inequality by proper parameter collocation for specific homogeneous kernel.The feature of the second stage is to get the best constant factor of inequality by proper parameter collocation for abstract homogeneous kernel.The third stage is characterized by seeking the necessary and sufficient condition for the existence of inequalities with the abstract homogeneous kernel.The division of these three stages is helpful to understand the current situation of Hilbert-type inequality research.
作者 洪勇 HONG Yong(Department of Mathematics, Guangdong Baiyun University, Guangzhou, Guangdong, 510450, P.R.China;School of Mathematics and Statistics, Guangdong University of Finance and Economics,Guangzhou, Guangdong, 510320, P.R.China)
出处 《广东第二师范学院学报》 2020年第3期17-24,共8页 Journal of Guangdong University of Education
关键词 齐次核 HILBERT型积分不等式 权系数方法 研究进展 研究现状 homogeneous kernel Hilbert-type integral inequality weight coefficient method research progress research status
  • 相关文献

参考文献6

二级参考文献38

  • 1杨必成.一个反向的Hardy-Hilbert积分不等式[J].吉林大学学报(理学版),2004,42(4):489-493. 被引量:32
  • 2洪勇.涉及多个函数的Hardy型积分不等式[J].数学学报(中文版),2006,49(1):39-44. 被引量:11
  • 3杨必成,高明哲.关于Hardy-Hilbert不等式中的一个最佳常数[J].数学进展,1997,26(2):159-164. 被引量:57
  • 4徐利治,数学季刊,1991年,6卷,1期,75页
  • 5Cao Yuan,数学研究与评论,1991年,11卷,1期,151页
  • 6张南岳,数学的实践与认识,1985年,1期,30页
  • 7刘玉琏,数学分析讲义.上,1981年
  • 8Hardy, G. H., Littlcwood, J. E. & Polya, G., Inequalitics [M], Cambridge University Press, Cambridge, 1952.
  • 9Mitrinovic, D. S. Pecaric, J. E. & Fink, A. M., Inequalities involving functions and their intergrals and derivatives [M], Kluwer Academic Publishers, Boston, 1991.
  • 10Gao Mingzhe & Yang Bicheng, On the extended Hilbert's inequality [J], Proceedings of the American Mathematical Society, 126(1998), 751-759.

共引文献135

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部