期刊文献+

高密度噪声和混合噪声的图像去噪算法 被引量:1

Images Denoising Algorithm for High Density Noise and Mixed Noise Removal
下载PDF
导出
摘要 去除高密度噪声和混合噪声一直是图像处理的难题之一.提出的算法MMM(Mixed-Median-Mean)将传统的中值和均值滤波相结合,取得了较好的去噪效果.该算法对邻域窗口内像素点进行有效替换,并且引入超参数k对替换数目进行控制,有效地提升了传统算法的去噪性能.实验对单一的高密度噪声和混合噪声的不同组合进行了验证,噪声包括高斯噪声、脉冲噪声和乘性噪声.实验结果证明该算法的有效性及强鲁棒性. Eliminating high density noise and mixed noise from the image is one of the difficult problems in image processing.The proposed algorithm combining the traditional Median and Mean filtering algorithm,called MMM(mixed-median-mean),achieves a better denoising effect.The algorithm replace the pixels in the processing window with appropriate values and control the replacement number by introducing a hyper parameter k.The experiments simulate single high-density noise,including gaussian noise,impulse noise and multiplicity noise,and the different combinations of mixed noise.The experimental results show that the MMM algorithm effectively improves the performance of the traditional algorithms and it is effective and robust.
作者 郭慧娟 岳云霄 林菲 白雪飞 GUO Huijuan;YUE Yunxiao;LIN Fei;BAI Xuefei(Computer Science and Technology Department,Taiyuan Normal University,Jinzhong 030619,China;Research Center for Scientific Development in Fenhe River Valley,Taiyuan Normal University,Jinzhong 030619,China;School of Computer and information Technology,Shanxi University,Taiyuan 030006,China)
出处 《太原师范学院学报(自然科学版)》 2020年第2期41-47,共7页 Journal of Taiyuan Normal University:Natural Science Edition
基金 国家社科基金青年项目(17CZS003) 国家自然科学基金项目(61703252) 山西省教育厅2019年度人文社会科学重点研究基地项目(20190123) 山西省应用基础研究计划项目(201701D121053)。
关键词 中值滤波 均值滤波 脉冲噪声 高斯噪声 乘性噪声 混合噪声 median filtering mean filtering impulse noise Gaussian noise multiplicative noise mixed noise
  • 相关文献

参考文献9

二级参考文献89

  • 1李秀峰,苏兰海,荣慧芳,陈华.改进均值滤波算法及应用研究[J].微计算机信息,2008,24(1):235-236. 被引量:20
  • 2冯焕飞,何友全,刘冲.基于邻域相关的自适应中值滤波算法[J].重庆交通大学学报(自然科学版),2013,32(3):547-550. 被引量:13
  • 3蔡剑华,李晋.基于频率域小波去噪的大地电磁信号工频干扰处理[J].地质与勘探,2015,51(2):353-359. 被引量:16
  • 4冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2007.
  • 5Ji Luping, Yi Zhang. A mixed noise image filtering meth- od using weighted-linking PCNNs [ J ]Neurocomputing, 2008, 71(13-15) : 2986-3000.
  • 6Wang Z B, Ma Y. Medical image fusion using m-PCNN [J]. Information Fusion, 2008, 9(2): 176-185.
  • 7Wang Zhaobin, Ma Yide, Cheng Feiyan, et al. Review of pulse-coupled neural networks [ J ]. Image and Vision Computing, 2010, 28(1): 5-13.
  • 8Shui P L. Image denoising algorithm via doubly local Wiener filtering with directional windows in wavelet do- main [ J ]. IEEE Signal Processing Letters, 2005, 12(10) : 681-684.
  • 9Eom I K, Kim Y S. Wavelet-based denoising with nearly arbitrarily shaped windows [ J ]. IEEE Signal Processing Letters, 2004, 11 (12) : 937-940.
  • 10Eckhorn R, Arndt M, Dicke P. Feature linking via syn- chronization among distributed assemblies: simulations of results from cat visual cortex [ J]. Neural Computation, 1990, 2(3) : 293-307.

共引文献120

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部