摘要
通过不同的数据分布、激活函数和网络结构对卷积神经网络(convolutional neural networks,CNN)的训练过程进行试验分析发现,数据不均衡会造成CNN训练过程收敛慢、泛化能力差的负面影响。针对这一问题,结合过抽样和欠抽样各自的优点,在随机梯度下降算法的基础上,提出均衡小批量随机梯度下降算法(equilibrium mini-batch stochastic gradient descent,EMSGD),保证小批量内的数据均衡,精确调整更新参数的梯度方向。试验结果表明,均衡小批量随机梯度下降算法可以在数据不均衡条件下提高CNN训练误差收敛速度,提高泛化性能。
Experiments under different data,activation functions and network structures show that the CNN training error converges slowly and the generalization ability is poor under imbalanced training data.In response to this problem,in combination with advantages of over-sampling and under-sampling,equilibrium mini-batch stochastic gradient descent(EMSGD)was put forward on the basis of the mini-batch stochastic gradient descent,ensuring the data balance in mini-batch and adjusting accurately the gradient direction of update parameters.Experiments prove that EMSGD can raise convergence speed of CNN training error under the condition of imbalanced training data and improve the generalization ability.
作者
马骏
钱亚冠
郭艳凯
吴淑慧
云本胜
MA Jun;QIAN Yaguan;GUO Yankai;WU Shuhui;YUN Bensheng(School of Sugon Big Date Science,Zhejiang University of Science and Technology,Hangzhou 310023,Zhejiang,China)
出处
《浙江科技学院学报》
CAS
2020年第3期181-190,共10页
Journal of Zhejiang University of Science and Technology
基金
浙江省公益技术应用研究项目(LGG19F030001)
浙江省自然科学基金项目(LY17F020011)
国家自然科学基金项目(61572163)。
关键词
数据不均衡
卷积神经网络
随机梯度下降
data imbalance
convolutional neural networks(CNN)
stochastic gradient descent