期刊文献+

求解凸优化问题的改进对称交替方向乘子法 被引量:1

A modified symmetric alternating direction method of multipliers for convex optimization problems
下载PDF
导出
摘要 对称交替方向乘子法(简称S-ADMM算法)是求解可分离凸优化问题的一种有效方法。该算法利用目标函数的可分离性,将原问题分解成多个极小化子问题,然后交替求解。能否有效地求解子问题对算法的有效性有重要影响。在很多实际应用中,不能精确地求解子问题,或者精确求解子问题花费代价较大。为解决这一问题,提出了一种改进的对称交替方向乘子法(简称MSADMM算法)。与一般的S-ADMM算法相比,该算法在x子问题中引入一个半近邻项,近似地求解x子问题,克服了之前算法的不足。在适当的假设下,证明了其收敛性。最后,通过数值计算说明了该算法的有效性。 Symmetric alternating direction method of multipliers(S-ADMM)is an efficient method for convex optimization problems with separable structure.The algorithm makes use of the separability of the objective function to decompose the original problem into several minimization subproblems and to solve them alternately.Whether the subproblems can be effectively solved affects the effectiveness of the algorithm.In many practical applications,subproblems cannot be solved precisely,or the cost of solving subproblems precisely is relatively high.To solve this problem,a modified symmetric alternating direction method of multipliers(MS-ADMM)is proposed.Compared to the general symmetric ADMM,this algorithm adds a semi-proximal term to x-subproblem which is then solved approximately.This overcomes the shortcoming of the previous algorithm.The convergence of the sequence generated by the proposed algorithm is proved under some suitable assumptions.Preliminary numerical experiments illustrate the effectiveness of proposed algorithm.
作者 蒋峰 党亚峥 JIANG Feng;DANG Yazheng(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2020年第3期269-274,共6页 Journal of University of Shanghai For Science and Technology
基金 上海市自然基金资助项目(17ZR1419000) 河南省科技攻关项目(172102310252)。
关键词 凸优化 改进的对称交替方向乘子法 收敛性 convex optimization modified symmetric alternating direction method of multipliers convergence
  • 相关文献

参考文献3

二级参考文献68

  • 1何炳生.论求解单调变分不等式的一些投影收缩算法[J].计算数学,1996,18(1):54-60. 被引量:20
  • 2Bing-sheng He,Li-zhi Liao,Mai-jian Qian.ALTERNATING PROJECTION BASED PREDICTION-CORRECTION METHODS FOR STRUCTURED VARIATIONAL INEQUALITIES[J].Journal of Computational Mathematics,2006,24(6):693-710. 被引量:14
  • 3Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B (Method- ological), 1996,15 (1) : 267-288.
  • 4Bickel P J, Li B, Tsybakov A B, et al. Regularization in statistics[J]. Sociedad de Estadistica e Investigacion Operativa, 2006, 15(2) :271-344.
  • 5Fadili M J, Starck J L. Monotone operator splitting for optimization problems in sparse recovery[C] // Image Processing (ICIP), 2009 16th IEEE International Conference on. Cairo, Egypt:[s. n. ], 2009: 1461-1464.
  • 6Liu J, Yuan L, Ye J. Dictionary Lasso: Guaranteed sparse recovery under linear transformation[C]// Proceedings of Ma- chine Learning, 2012 30th IEEE international Conference. Atlanta, USA:[s. n. ], 2012: 1-28.
  • 7Zhou T, Tao D. Multi-task copula by sparse graph regression[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:[s. n. ], 2014: 771-780.
  • 8Yuan X. Alternating direction methods for sparse covariance selection[J]. Journal of Scientific Computing, 2012, 51 (2): 261-273.
  • 9Sun Y, Liu Q, Tang J, et al. Learning discriminative dictionary for group sparse representation[J]. IEEE Transaction on Image Processing, 2014, 23(9):3816-3826.
  • 10Hastie T, Tibshirani R, Friedman J, et al. The elements of statistical learning: Data mining, inferenee and prediction[J]. The Mathematical Intelligencer, 2005, 27(2):83-85.

共引文献20

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部