期刊文献+

基于ECOC的多类代价敏感分类方法

Multiclass Cost-sensitive Classification Based on Error Correcting Output Codes
下载PDF
导出
摘要 研究了基于纠错输出编码实现多类代价敏感分类的方法,提出了一种新的将多类代价敏感分类问题分解为多个二类代价敏感分类问题的框架。为获得其中每个二类代价敏感基分类器的二类代价矩阵,提出了利用已知多类代价矩阵计算误分类代价的期望值的方法,给出了计算二类代价矩阵的通用计算公式。为验证所提方法的有效性,在人工和UCI数据集上将其与现有方法进行了比较,实验结果表明所提方法具有相似甚至更好的性能。 Approach of multiclass cost-sensitive classification based on error correcting output codes is studied in this paper,and a new framework to decompose the complex multiclass cost-sensitive classification problem into a series of binary cost-sensitive classification problems is proposed.In order to obtain the binary cost matrix of each binary cost-sensitive base classifier,a method of computing the expected misclassification costs from the given multiclass cost matrix is proposed,and the general formula for computing the binary costs are given.Experimental results on artificial datasets and UCI datasets show that the proposed method has similar or even better performance in comparison with the existing methods.
作者 吴崇明 王晓丹 薛爱军 来杰 WU Chong-ming;WANG Xiao-dan;XUE Ai-Jun;LAI Jie(Business School,XiJing University,Xi’an 710123,China;College of Air and Missile Defense,Air force Engineering University,Xi’an 710051,China)
出处 《计算机科学》 CSCD 北大核心 2020年第S01期89-94,共6页 Computer Science
基金 国家自然科学基金(61876189,61273275,61703426)。
关键词 多类代价敏感分类 纠错输出编码 多类代价矩阵 二类代价矩阵 Multiclass cost-sensitive classification Error correcting output codes Multiclass cost matrix Binary cost matrix
  • 相关文献

参考文献1

二级参考文献55

  • 1李建武,魏海周,宋玉龙.ECOC多分类器实现的最小封闭球模型[J].计算机研究与发展,2011,48(S3):22-30. 被引量:1
  • 2蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 3陶晓燕,姬红兵.一种基于SOM解码的多类支持向量机[J].系统工程与电子技术,2006,28(9):1447-1450. 被引量:3
  • 4T G Dietterich, G Bakiri. Solving. Multi-class learning problemsvia error-correcting output codes[J] .Journal of Artificial Intel- ligence Research, 1995,34 ( 2 ) : 263 - 286.
  • 5T G Dietterich,G Bakiri, Error-correcting output codes:A gen- eral method for improving multiclass inductive learning pro- grants[A]. Proceedings of the Ninth National Conference on Artificial Intelligence[C]. Menlo Park, San Francisco: AAAI, 1991.572 - 577.
  • 6T G Dietterich, E Kong. Error correcting output codes corrects bias and variance[A]. Proceedings of the 21th Intemafional Conference on Machine Learning[C]. San Francisco: AAAI, 1995.313 - 321.
  • 7F MasuUi G Valentini. Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines [J]. Pattern Anal Applic, 2003,65(6) :285 - 300.
  • 8Crammer K, Singer Y.On the leamability and design of output codes for mulficlass problems [A]. Proceedings of the Thir- teenth Annual Conference on Computational Learning Theory [C]. Boston: Kluwer Academic Publishers, 2000. 896 - 909.
  • 9T Windeatt,R Ghaderi. Binary labelling and decision level fu- sion[J] .Information Fusion, 2001,2( 1 ) : 103 - 112.
  • 10E Tapia, P Bulacio, L Angelone. Recursive classification [J]. Pattern Recognition letters, 2010,31 (3) : 210 - 215.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部