期刊文献+

光子神经网络发展与挑战 被引量:15

Advances and Challenges of Optical Neural Networks
原文传递
导出
摘要 近年来,以神经网络为代表的人工智能技术正向着高速低功耗的方向快速发展。然而,受限于电子器件的固有极限,传统电子神经网络难以进一步提高功率效率与计算速度。而光子神经网络能够有机地将光电子技术与神经网络模型相结合,提供了突破这一瓶颈的有效手段。为了更好地了解光子神经网络的发展历程,把握当前光子神经网络的研究热点以及展望未来光子神经网络的发展方向,本文对光子前馈、循环以及脉冲神经网络的研究现状进行梳理,以阐释光子神经网络在实时训练、非线性运算、规模化和实用化方面面临的挑战及未来发展的趋势。 Neural networks,as one of the most representative techniques in artificial intelligence,have been in rapid development towards high computational speed and low power cost.Due to intrinsic limitations brought by electronic devices,it can be hard for electronic implemented neural networks to further improve these two performances.Optical neural networks can combine both optoelectronic technique and neural network model to provide ways to break the bottleneck.In order to have a brighter view on the history,frontiers and future of optical neural networks,optical neural networks of feed-forward,recurrent and spiking models are illustrated in this paper.Challenges and future trends of optical neural networks on in situ training,nonlinear computing,expanding scale and applications will thus be revealed.
作者 陈宏伟 于振明 张天 臧裕斌 淡一航 徐坤 Chen Hongwei;Yu Zhenming;Zhang Tian;Zang Yubin;Dan Yihang;Xu Kun(Department of Electronic Engineering,Tsinghua University,Beijing 100084,China;Beijing National Research Center for Information Science and Technology(BNRist),Beijing 100084,China;State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第5期72-83,共12页 Chinese Journal of Lasers
基金 北京市科技计划(Z181100008918011) 国家自然科学基金(61771284,61901045)。
关键词 光计算 神经网络 光电子技术 人工智能 optics in computing neural networks optoelectronic technology artificial intelligence
  • 相关文献

参考文献7

二级参考文献84

  • 1郑永超,赵铭军,张文平,赵春生,沈严.激光雷达技术及其发展动向[J].红外与激光工程,2006,35(z3):240-246. 被引量:28
  • 2屈平,杨培根,孟敏,王学才.应用广泛的激光雷达[J].探测与定位,2004,14(2):15-20. 被引量:1
  • 3R.S.Tucker.The role of optics in computing[J].Nature Photon.,2010,4(7): 405.
  • 4H.J.Caulfield,S.Dolev.Why future supercomputing requires optics[J].Nat.Photonics,2010,4(5): 261-263.
  • 5D.Woods,T.J.Naughton.Optical computing: photonic neural networks[J].Nature Phys.,2012,8(4): 257-259.
  • 6M.Lukoeviius,H.Jaeger.Reservoir computing approaches to recurrent neural network training[J].Computer Science Review,2009,3(3): 127-149.
  • 7M.C.Ozturk,D.Xu,J.C.Principe.Analysis and design of echo state networks[J].Neural Computation,2007,19(1): 111-138.
  • 8W.Maass,T.Natschlager,H.Markram.Real-time computing without stable states: a new framework for neural computation based on perturbations[J].Neural Computation,2002,14(11): 2531-2560.
  • 9D.Verstraeten,B.Schrauwen,M.D′Haene et al..An experimental unification of reservoir computing methods[J].Neural Networks,2007,20(3): 391-403.
  • 10M.Lukoeviius,H.Jaeger,B.Schrauwen.Reservoir computing trends[J].KI-Künstliche Intelligenz,2012,26(4): 365-371.

共引文献76

同被引文献99

引证文献15

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部