期刊文献+

基于CFD技术与遗传算法的风力机大厚度翼型优化设计 被引量:3

Optimal Design of Wind Turbine Thickness Airfoil Based on CFD Technology and Genetic Algorithm
下载PDF
导出
摘要 针对目前风力机大厚度翼型设计参数空间有限、优化设计过程中气动力预测不准等问题,利用B样条函数表征通用翼型廓线,编制程序集成耦合翼型设计模块、任意翼型自适应网格模块、CFD流场计算模块、遗传算法优化模块,提出了基于CFD技术与遗传算法的风力机叶片大厚度翼型优化设计方法,并对比分析优化新翼型与DU97-W-300翼型的几何特性与气动性能。结果表明,优化方法设计的新翼型在主要攻角范围内具有较高的气动性能,在雷诺数为3.0×10^6的情况下,其升力系数、升阻比分别提高了13.555%、38.588%。该翼型优化设计方法为风力机大厚度通用翼型的设计与应用提供参考。 The problem for the current wind turbine blade thickness airfoils is the limit of the design parameter space and the inaccurate of aerodynamic prediction in the process of optimal design.The B-spline function is used to express the general airfoil profile.The airfoil design module,arbitrary airfoil adaptive mesh module,CFD flow field calculation module and genetic algorithm optimization module are integrated into the optimal program.A novel thickness airfoil design method is presented based on the CFD technology and genetic algorithm.The geometric and aerodynamic characteristics of the optimized airfoil and DU97-W-300airfoil are compared and analyzed.The results show that the new airfoil designed by this method has higher aerodynamic performance in the main angle of attack.When the Reynolds Numbers is 3.0×10^6,its lift coefficient and lift-drag ratio are increased by 13.555%and 38.588%,respectively.This airfoil optimization design method can provide reference for the design and application of large thickness general airfoil of wind turbine.
作者 汪泉 胡梦杰 陈晓田 王君 WANG Quan;HU Meng-jie;CHEN Xiao-tian;WANG Jun(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China)
出处 《水电能源科学》 北大核心 2020年第6期165-168,共4页 Water Resources and Power
基金 国家自然科学基金项目(51405140,51975190)。
关键词 大厚度翼型 B样条函数 CFD技术 自适应网格 遗传算法 thickness airfoil B-spline function CFD technology adaptive mesh genetic algorithm
  • 相关文献

参考文献6

二级参考文献41

  • 1包能胜,霍福鹏,叶枝全,倪维斗.表面粗糙度对风力机翼型性能的影响[J].太阳能学报,2005,26(4):458-462. 被引量:38
  • 2Scott J S, Michael C R. Horizontal axis wind turbine blade aerodynamics in experiment and modeling [ J ].IEEE Transaction on energy conversion, 2007, 22 ( 1 ) :61-69.
  • 3Badreddine k, David A, Alain C A. Wind turbine blade profile analysis code based on the singularities method[ J ]. Renewable energy, 2005, 30 (3): 339- 352.
  • 4Jureczko M, Pawlak M, Meayk A. Optimisation of wind turbine blade[ J ]. Journal of material processing technology, 2005, 167 (23) : 463471.
  • 5Chalothorn Thunthae, Tawit Chitsomboon. Optimal angle of attack for untwisted blade wind turbine [ J ]. Renewable energy, 2009, 24: 1279-1284.
  • 6江帆,黄鹏.Fluent高级应用于实例分析[M].北京:电子工业出版社,2007.
  • 7李俊峰,蔡风波.中国风电发展报告[R].北京.中国循环经济协会,2014.
  • 8Amano R, Avdeev I, Malloy R, et al. Power, Struc- tural and Noise Performance Tests on Different Wind Turbine Rotor Blade Designs [J]. International Journal of Sustainable Energy, 2013, 32(6): 78-95.
  • 9Selig M S,McGranahan B D. Wind Tunnel Aerody- namic Tests of Six Airfoils for Use on Small Wind Turbines[J]. ASME Journal of Solar Energy Engi- neering, 2004,126 (3) : 986-1001.
  • 10Tangle J L, Somers D M. NREL Airfoil Families for HAWT's E C 3//Proc. WINDPOWER'95. Washington D C, 1995 : 117-123.

共引文献46

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部