期刊文献+

基于改进模型预测控制的“大机小网”下火电-光伏-抽水蓄能优化调度 被引量:2

Optimization Operation of Thermal-Photovoltaic-Pumped Storage in“Large Machine and Small Network”Based on Improved Model Predictive Control
下载PDF
导出
摘要 光伏大规模接入加剧了"大机小网"电网的结构性问题,导致传统单断面优化调度难以实现最优运行。提出了一种基于改进模型预测控制(MPC)的多时间尺度火电-光伏-抽水蓄能联合优化调度模型。即对于日前优化调度,在系统运行成本中引入了光伏未消纳量和火电污染物排放量形成多目标函数;对于日内滚动优化,以跟踪日前计划值为目标,考虑了光伏出力极限场景调节能力约束与抽水蓄能机组启停速率约束,并采用自适应调节预测时域与控制时域的MPC方法改进了传统MPC。海南省某区域电网的实际运行验证了该综合模型的有效性。 Large-scale photovoltaic power connected to the grid intensifies the structural problem of"large machine and small network".It is difficult for traditional single-section optimal dispatching to achieve optimal operation.A multitime scale model of optimization operation for thermal plant,photovoltaic generation and pumped storage station is proposed based on improved model predictive control(MPC).For the day-ahead optimal dispatch,a multi-objective function is constructed through integrating the system's operation cost with photovoltaic power curtailment and thermal power emission of pollutants.For intra-day rolling optimization dispatch,its goal is to track the day-ahead schedule value.The regulation capacity in photovoltaic output limit scene and start-stop rate of pumped storage units are considered as the constraints,and the traditional MPC is improved by adaptive regulation of predictive and control domains.The validity of the integrative model is verified by an example of a regional power grid in Hainan Province.
作者 莫若慧 余加喜 贾浩 徐清 余洋 MUO Ruo-hui;YU Jia-xi;JIA Hao;XU Qing;YU Yang(Power Dispatch Control Center of Power Grid of Hainan,Haikou 570203,China;Key Laboratory of Distributed Energy Storage and Microgrid of Hebei Province,North China Electric Power University,Baoding 071003,China)
出处 《水电能源科学》 北大核心 2020年第6期201-205,共5页 Water Resources and Power
关键词 大机小网 抽水蓄能 模型预测控制 多时间尺度 优化调度 large machine and small network pumped storage model predictive control multi-time scale optimization operation
  • 相关文献

参考文献6

二级参考文献59

  • 1LASSETER R H, PAIGI P. Microgrid: a conceptual solution [C]// IEEE 35th Annual Power Electronics Specialists Conference, June 20-25, 2004, Aachen, Germany, 4285-4290.
  • 2COSTA A, CRESPO A, NAVARRO J, et al. A review on the young history of the wind power short-term prediction [J ]. Renewable and Sustainable Energy Reviews, 2008, 12 (6): 1725-1744.
  • 3PARISIO A, RIKOS E, TZAMALIS G, et al. Use of model predictive control for experimental microgrid optimization[J]. Applied Energy, 2014, 115: 37-46.
  • 4MEHLERI E D. A model predictive control framework for residential microgrids [ J ]. Computer Aided Chemical Engineering, 2012, 30(4): 327-331.
  • 5FALAHI M, LOTFIFARD S, EHSANI M, et al. Dynamic model predictive-based energy management of DG integrated distribution systems [J]. IEEE Trans on Power Delivery, 2013, 28(4): 2217-2227.
  • 6PALMA-BEHNKE R, BENAVIDES C, LANAS F, et al. A microgrid energy management system based on the rolling horizon strategy[J]. IEEE Trans on Smart Grid, 2013, 4(2) 996-1006.
  • 7PRODAN l, ZIO E. A model predictive control framework for reliable microgrid energy management [ J ]. International Journal of Electrical Power & Energy Systems, 2014, 61: 399-409.
  • 8SCHALTZ E, KHALIGH A, RASMUSSEN P O. Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle [J]. IEEE Trans on Vehicular Technology, 2009, 58(8): 3882-3891.
  • 9BROOKE A, KENDRICK D, MEERAUS A, et al. GAMS/ CPLEX 9.0[R]. 2003.
  • 10王蓓蓓,李扬,高赐威.智能电网框架下的需求侧管理展望与思考[J].电力系统自动化,2009,33(20):17-22. 被引量:188

共引文献179

同被引文献23

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部