期刊文献+

一种改进的协同表示算法在人脸识别中的应用 被引量:1

An Improved Collaborative Representation Algorithm in Face Recognition
下载PDF
导出
摘要 协同表示算法在人脸识别过程中,受人脸的光照、表情、姿态、特别是训练样本过少等因素影响造成其特征的模糊或者丢失.训练样本数量较少时该问题更为突出,利用原始样本生成虚拟样本再权值融合的协同表示算法虽然对该问题有所改善,却不能大幅度提升人脸识别率.针对以上问题,提出一种改进的协同表示算法,首先生成镜像样本和轴对称样本,以增加单样本人脸特征信息;再在协同表示分类器下分类,对虚拟样本与原始样本加权融合,利用改进的算法增强人脸的特征,并重构误差进行分类识别;最后利用Yale、ORL和FERET人脸数据库实验,比较不同算法识别率.结果表明,在单样本识别中,改进的协同算法识别率比CRC提高2%~17%,比原始样本与对称样本融合提高2%~8%,比原始样本与镜像样本融合提高2%~3%,有效地提高了人脸识别率. In face recognition,the cooperative representation algorithm is affected by face illumination,expression,posture,and especially the lack of training samples.In practical applications,the number of training samples is often less.The original samples are used to generate a collaborative representation algorithm of virtual sample re-weight fusion,but it cannot greatly increase the face recognition rate.To solve the above problems,a collaborative representation algorithm to enhance the correlation texture information was proposed.First,image samples and axisymmetric samples wre generated to enhance the texture information associated with virtual samples.Then,under the cooperative representation classifier,the virtual sample was weighted and fused with the original sample,the improved algorithm was used to enhance the features of the face,and the error was reconstructed for classification and recognition.Finally,the weighted fusion of virtual samples and original samples was done by using Yale,ORL and FERET databases.The experimental results show that the recognition rate of the algorithm is increased by 2%~17%in single sample recognition,which is 2%~8%higher than the fusion of the original sample and the symmetrical sample,and 2%~3%higher than the fusion of the original sample and the mirror sample.Experimental results show that the algorithm can effectively improve the face recognition rate.
作者 董林鹭 林国军 赵良军 石小仕 薛智爽 黄慧 DONG Linlu;LIN Guojun;ZHAO Liangjun;SHI Xiaoshi;XUE Zhishuang;HUANG Hui(School of Automation and Information Engineering,Sichuan University of Science and Engineering,Zigong,Sichuan 643000,China;School of Computer,Sichuan University of Science and Engineering,Zigong,Sichuan 643000,China)
出处 《宜宾学院学报》 2020年第6期50-53,80,共5页 Journal of Yibin University
基金 四川省教育厅自然科学基金项目(17ZB0302) 四川轻化工大学科研项目(2015RCA9) 四川轻化工大学科研项目(2018RCL21)。
关键词 人脸识别 镜像样本 对称样本 协同表示 权值融合 特征提取 face recognition mirror image sample symmetric sample cooperative representation weight fusion feature extraction
  • 相关文献

参考文献3

二级参考文献23

  • 1刘永俊,陈才扣.最大散度差鉴别分析及人脸识别[J].计算机工程与应用,2006,42(34):208-210. 被引量:23
  • 2ZHU N B, LI S T. A kernel-based sparse representation method for face recognition [ J]. Neural comput & applic, 2014( 24 ) :845-852.
  • 3TURK M, PENTLEND A. Eigenfaces for recognition [ J]. Cognitive neuroscience, 1991,3( 1 ) :71-86.
  • 4BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[ J]. IEEE transactions on pattern analysis & machine intelligence, 1997, 19 (7) : 711-720.
  • 5COVER T, HART P. Nearest neighbor patter classification [J ]. IEEE transactions on information theory, 1967, 13(1) :21-27.
  • 6WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[ J]. IEEE transactions on pattern analysis & machine intelligence, 2008, 31 (2) : 210-227.
  • 7SHI Q, ERIKSSON A, HENGEL A V D, et al. Is face recognition really a Compressive Sensing problem? [ C ]// IEEE Conference on Computer Vision & Pattern Recogni- tion.[S. 1. ] :IEEE,2011:553-560.
  • 8ZHANG L, YANG M, FENG X. Sparse representation or collaborative representation: Which helps face recognition [ C]//Proc. IEEE Int. Conf. Comput. Vision. [ S. 1. ] : IEEE ,2011:471-478.
  • 9QIAO L, CHEN S ,TAN X. Sparsity preserving discriminant analysis for single training image face recognition[ J]. Pat- tern recognit, lett. ,2010,31 (5) :422-429.
  • 10THIAN N P H, MARCEL S, BENGIO S. Improving face authentication using virtual samples [ C ]//Proc. IEEE In- ternational Conference on Acoustics, Speech, and Signal Processing. [ S. 1. ] :IEEE,2003:6-10.

共引文献8

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部