期刊文献+

Critical state model for structured soil

下载PDF
导出
摘要 Structure is an evident determinant for macroscopic behaviors of soils.However,this is not taken into account in most constitutive models,as structure is a rather complex issue in models.For this,it is important to develop and implement simple models that can reflect this important aspect of soil behavior.This paper tried to model structured soils based on well-established concepts,such as critical state and sub-loading.Critical state is the core of the classic Cam Clay model.The sub-loading concept implies adoption of an inner(sub-loading)yield surface,according to specific hardening rules for some internal strain-like state variables.Nakai and co-workers proposed such internal variables for controlling density(p)and structure(ω),using a modified stress space,called tij.Herein,similar variables are used in the context of the better-known invariants(p and q)of the Cam Clay model.This change requires explicit adoption of a non-associated flow rule for the sub-loading surface.This is accomplished by modifying the dilatancy ratio of the Cam Clay model,as a function of the new internal variables.These modifications are described and implemented under three-dimensional(3D)conditions.The model is then applied to simulating laboratory tests under different stress paths and the results are compared to experiments reported for different types of structured soils.The good agreements show the capacity and potential of the proposed model.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期630-641,共12页 岩石力学与岩土工程学报(英文版)
基金 Universidad Nacional de Colombia Universidade de Brasilia in Brazil for their technical and financial support。
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部