摘要
目前已有的大部分过程模型推荐方法无法处理诸如循环相互交叠和不可见任务等复杂结构,也无法处理具有大量过程模型和活动节点的大数据集。此外,这些推荐方法在正确率和效率方面仍有很大的提升空间。由此,提出一种基于前驱活动序列和后继活动节点之间结构关系的推荐方法。该方法首先对所有业务过程模型中的不可见任务进行打标。然后,在指定关系集合中所需要的前驱活动序列长度之后,提取3种记录前驱活动序列和后继活动节点之间关系的关系集合。最后,使用提取出的关系集合推荐适当候选活动节点。实验结果证明,该方法能够处理复杂结构、不可见任务和大数据集,且在正确率和效率方面均领先于目前最好的方法。
Traditional business process recommendation methods cannot deal with silent transitions and complex structures such as interacting loops.They cannot handle big datasets,and there is room to improve accuracy and efficiency.A recommendation method based on structural relations between precursor activity sequences and successor active nodes was proposed.All silent transitions in business process models were relabeled.After specifying the length of precursor activity sequences,the relations between precursor activity sequences and successor active nodes were extracted using three strategies.With the relation sets,the proper nodes were recommended.The experimental results showed that the method could handle the complex structures,silent transitions and large datasets,and it was outperformed all other state-of-the-art methods.
作者
王华清
夏鑫
闻立杰
邱泓钧
王建民
WANG Huaqing;XIA Xin;WEN Lijie;QIU Hongjun;WANG Jianmin(School of Software,Tsinghua University,Beijing 100084,China;Inspur Software Co.,Ltd.,Jinan 250101,China)
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2020年第6期1445-1455,共11页
Computer Integrated Manufacturing Systems
基金
国家重点研发计划资助项目(2017YFA0700605)
国家自然科学基金资助项目(61472207,71690231)
北京信息科学与技术国家研究中心资助项目。
关键词
业务过程模型
顺序关系
推荐
复杂结构
business process model
ordering relations
recommendation
complex structures