期刊文献+

Rb掺杂Li4Ti5O12作为锂离子电池负极材料的合成及电化学性能

Synthesis and Electrochemical Performances of Rb-Doped Li4Ti5O12 as Anode Material for Lithium-Ion Batteries
下载PDF
导出
摘要 合成了不同Rb掺杂量的钛酸锂(Li4-xRbxTi5O12;x=0.010,0.015,0.020)作为锂离子电池的负极材料。测试结果显示,Rb离子掺杂有效增强了钛酸锂的电子电导率。相同的测试条件下,相比于未掺杂样品和高Rb含量掺杂样品(x=0.015,0.020),适量的Rb掺杂钛酸锂(Li3.99Rb0.01Ti5O12;x=0.010)表现出最优的电化学性能。Li3.99Rb0.01Ti5O12材料表现出161.2 mA∙h/g的初始容量,且在1 C下经过1000次循环后容量保持率可达90.9%。此外,全电池Li3.99Rb0.01Ti5O12//LiFePO4在0.5 C条件下首次放电容量为144 mA∙h/g,经过150次循环后,容量保持率为78.8%。 Rb-doped lithium titanates with different doping levels(Li4-xRbxTi5O12;x=0.010,0.015,0.020)as anode materials for lithium-ion batteries were synthesized.Results showed that the electronic conductivity of lithium titanates was enhanced by Rb doping.The low Rb-doping level sample(Li3.99Rb0.01Ti5O12;x=0.010)showed better electrochemical performances than those with higher doping levels(x=0.015,0.020)and neat lithium titanate prepared under the same conditions.Li3.99Rb0.01Ti5O12 with the optimized Rb-doping level delivered an initial capacity of 161.2 mA∙h/g with capacity retention of 90.9%after 1000 cycles at 1 C.The full cell of Li3.99Rb0.01Ti5O12//LiFePO4 delivered a discharge capacity of 144 mA∙h/g,retaining 78.8%of the initial capacity after 150 cycles at 0.5 C.
作者 SMOLIANOVA Inna 张聪聪 赵欣悦 张灵志 SMOLIANOVA Inna;ZHANG Cong-cong;ZHAO Xin-yue;ZHANG Ling-zhi(Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China;CAS Key Laboratory of Renewable Energy,Guangzhou 510640,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《新能源进展》 2020年第3期192-199,共8页 Advances in New and Renewable Energy
基金 国家自然科学基金项目(21573239) 广州市科技计划项目(201509010018)。
关键词 钛酸锂 Rb掺杂 循环稳定性 阳极材料 锂离子电池 全电池 lithium titanate rubidium doping cycling stability anode material lithium-ion battery full cell
  • 相关文献

参考文献2

二级参考文献58

  • 1Zhang Q Y, Zhang C L, Li B, et al. Preparation andElectrochemical properties of Ca-Doped Li4Ti5Oi2 asAnode materials in Lithium-Ion Battery [J]. Electrochim.Acta, 2013, 98: 146-152.
  • 2Zhang Q Y. The Current Status on the Recycling ofLead-acid Batteries in China[J]. Int. J. Electrochem. Sci.,2013,8: 6457-6466.
  • 3Wolfenstine J,Allen J L. Electrical conductivity andcharge compensation in Ta doped Li4Ti5Oi2[J]. J. PowerSources, 2008,180(1): 582-585.
  • 4DUNN B, KAMATH H, TARASCON J M, et al.Electrical energy storage for the grid: a battery ofchoices[J]. Science, 2011, 334(6058): 928-935. DOI:10.1126/science.1212741.
  • 5CROGUENNEC L, PALACIN M R. Recent achievementson inorganic electrode materials for lithium-ionbatteries[J]. Journal of the American chemical society,2015, 137(9): 3140-3156. DOI: 10.1021/ja507828x.
  • 6REDDY M V, RAO G V S, CHOWDARI B V R. Metaloxides and oxysalts as anode materials for Li ionbatteries[J]. Chemical reviews, 2013, 113(7): 5364-5457.DOI: 10.1021/cr3001884.
  • 7YI T F, YANG S Y, TAO M, et al. Synthesis andapplication of a novel Li4Ti5O12 composite as anodematerial with enhanced fast charge-discharge performancefor lithium-ion battery[J]. Electrochimica acta, 2014, 134:377-383. DOI: 10.1016/j.electacta.2014.04.179.
  • 8ZAGHIB K, DONTIGNY M, GUERFI A, et al. Safe andfast-charging Li-ion battery with long shelf life for powerapplications[J]. Journal of power sources, 2011, 196(8):3949-3954. DOI: 10.1016/j.jpowsour.2010.11.093.
  • 9RONCI F, REALE P, SCROSATI B, et al.High-resolution in-situ structural measurements of theLi4/3Ti5/3O4 “Zero-Strain” insertion material[J]. Thejournal of physical chemistry B, 2002, 106(12):3082-3086. DOI: 10.1021/jp013240p.
  • 10OHZUKU T, UEDA A, YAMAMOTO N. Zero-straininsertion material of Li[Lil/3Ti5/3]O4 for rechargeablelithium cells[J]. Journal of the electrochemical society,1995, 142(5): 1431-1435. DOI: 10.1149/1.2048592.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部