期刊文献+

面向大数据处理的数据流编程模型和工具综述 被引量:2

A survey of dataflow programming models and tools for big data processing
下载PDF
导出
摘要 利用大数据计算平台对大量的静态数据进行数据挖掘和智能分析助推了大数据和人工智能应用的落地。在面临互联网、物联网产生的日益庞大的实时动态数据的处理需求时,数据流计算被逐步引入目前的一些大数据处理平台中。针对数据流的编程模型,比较了传统软件工程的面向数据流的分析和设计方法与目前针对大数据处理平台的数据流编程模型提供的结构定义和模型参考,分析了两者的差异和不足,总结了数据流编程模型的主要特征和关键要素。分析了目前数据流编程的主要方式以及与主流编程工具的结合,针对大数据处理的数据流计算业务需求,给出了可视化数据流编程工具的基本框架和编程模式。 The application of big data and artificial intelligence is promoted by data mining and intelligent analysis of a large number of static data using big data computing platform.In the face of the growing demand for real-time dynamic data processing generated by the Internet of things,dataflow computing has been gradually introduced into some big data processing platforms.Aiming at the programming model of data flow,the traditional software engineering design method for dataflow analysis and the structure definition and model reference provided by the current dataflow programming model for big data processing platform was compared,the differences and shortcomings were analyzed,and the main features and key elements of the dataflow programming model were summarized.The main methods of dataflow programming and the combination with the mainstream programming tools were analyzed,and the basic framework and programming mode of visual dataflow programming tools were presented according to the dataflow computing business requirements of big data processing.
作者 邹骁锋 阳王东 容学成 李肯立 李克勤 ZOU Xiaofeng;YANG Wangdong;RONG Xuecheng;LI Kenli;LI Keqin(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410008,China)
出处 《大数据》 2020年第3期57-72,共16页 Big Data Research
基金 国家重点研发计划基金资助项目(No.2018YFB1003401)。
关键词 数据流 编程模型 大数据处理 编程工具 data flow programming model big data processing programming tool
  • 相关文献

参考文献2

二级参考文献28

  • 1沈轶炜,曾国荪.异构计算中一种图的非均衡划分算法[J].计算机科学,2006,33(6):260-263. 被引量:7
  • 2Gordon M I, Thies W, Karczmarek M, et al. A stream com- piler for communication-exposed architectures//Proceedings of the 10th International Conference of Architectural Support for Programming Languages and Operating Systems. New York, NY, USA, 2002: 291-303.
  • 3Wei Hai-Tao, Qin Ming-Kang, Zhang Wei Wei, et al. Stre amTMC Stream compilation for tiled multi core arehitec tures. Journal of Parallel and Distributed Computing, 2013 73(4) :484-494.
  • 4Dally W, Labonte F, Das A, et al. Merrimac: Supercomput ing with Streams//Proceedings of the ACM/IEEE Confer ence on Supercomputing. New York, NY, USA, 2003 35-42.
  • 5Hofstee H. Power efficient processor architecture and the Cell processor//Proceedings of the 11th International Symposium on High-Performance Computer Architecture. Washington, DC, USA, 2005: 258-262.
  • 6Thies W, Karczmarek M, Amarasinghe S. StreamIt: A language for streaming applications//Proceedings of the llth International Conference on Compiler Construction. London, UK, 2002:179-196.
  • 7Buck I, Foley T, Horn D, et al. Brook for GPUs: Stream computing on graphics hardware. ACM Transactions on Graphics, 2004, 23(3): 777 -786.
  • 8Mark W, Steven R, Kurt G, et al. Cg: A system for programming graphics hardware in a C-like language. ACM Transactions on Graphics, 2003, 22(3): 893-907.
  • 9Wei Hai-Tao, Yu Jun-Qing, Yu Hua-Fei, et al. Minimizing communication in rate optimal software pipelining for stream programs//Proceedings of the 8th Annual IEEE/ACM Inter national Symposium on Code Generation and Optimization. New York, NY, USA, 2010 : 210-217.
  • 10Mernik M, Heering J, Sloane A. When and how to develop domain-specific languages. ACM Computing Surveys, 2005, 37(4) : 316-344.

共引文献10

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部